ENSAE: Introduction aux enjeux du MLOps
For open-source projects, GitHub could provide the workflow and runners for total automation.
wandb looks used widely for reporting.
repos:
- Full GitHub CI/CD : https://github.com/BenedictusAryo/Simple-MLOps-Configuration/
- basic tf text classification : https://github.com/DamienBouvet/lab-continuous-ml-2
- Example basic sklearn + python prediction GitOps repo : https://github.com/kingabzpro/CICD-for-Machine-Learning
- transformers + translation training + eval : https://github.com/liangwen12year/nmstate-yamlsmith
- Trash classification with Jupyter : https://github.com/pradanaadn/trash-classification
- ONNX export examples https://github.com/bookbot-hive/sherpa-onnx/blob/a9dc16df153adffcbaa7268aee500b13b518653a/.github/workflows/export-wenet-to-onnx.yaml
- https://onnx.ai/sklearn-onnx/
- ModerBert : https://github.com/fkuhne/ModernBERT-cats-and-dogs
MLOps and GitHub Actions series : https://lo-victoria.com/series/mlops
First try with sklearn :