Created
January 3, 2019 08:55
-
-
Save rexlow/49ab42b921b59cfd7229e410b5db32b9 to your computer and use it in GitHub Desktop.
NumpyPerformanceTest
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" File name : NumpyPerformanceTest.py | |
Description : This script is to profile the performance of different numpy methods | |
Usage : python3 NumpyPerformanceTest.py | |
Author : Rex Low | |
""" | |
import cv2 | |
import numpy as np | |
from time import time | |
np.random.seed(0) | |
green = [0,255,0] | |
blue = [255,0,0] | |
red = [0,0,255] | |
white = [255,255,255] | |
black = [0,0,0] | |
def np_simple(): | |
x = np.random.randint(0, 5, (500,500)) | |
row, col = x.shape | |
y = np.zeros((row, col, 3), np.uint8) | |
start = time() | |
for i in range(row): | |
for j in range(col): | |
k = x[i][j] | |
if k == 0: | |
y[i][j] = green | |
elif k == 1: | |
y[i][j] = blue | |
elif k == 2: | |
y[i][j] = red | |
elif k == 3: | |
y[i][j] = white | |
elif k == 4: | |
y[i][j] = black | |
return time() - start | |
def np_item(): | |
x = np.random.randint(0, 5, (500,500)) | |
row, col = x.shape | |
y = np.zeros((row, col, 3), np.uint8) | |
start = time() | |
for i in range(row): | |
for j in range(col): | |
k = x.item(i, j) | |
if k == 0: | |
y.itemset((i, j, 0), green[0]) | |
y.itemset((i, j, 1), green[1]) | |
y.itemset((i, j, 2), green[2]) | |
elif k == 1: | |
y.itemset((i, j, 0), blue[0]) | |
y.itemset((i, j, 1), blue[1]) | |
y.itemset((i, j, 2), blue[2]) | |
elif k == 2: | |
y.itemset((i, j, 0), red[0]) | |
y.itemset((i, j, 1), red[1]) | |
y.itemset((i, j, 2), red[2]) | |
elif k == 3: | |
y.itemset((i, j, 0), white[0]) | |
y.itemset((i, j, 1), white[1]) | |
y.itemset((i, j, 2), white[2]) | |
elif k == 4: | |
y.itemset((i, j, 0), black[0]) | |
y.itemset((i, j, 1), black[1]) | |
y.itemset((i, j, 2), black[2]) | |
return time() - start | |
def np_palette(): | |
start = time() | |
x = np.random.randint(0, 5, (500,500)) | |
color = np.array([green, blue, red, white, black], np.uint8) | |
y = color[x] | |
return time() - start | |
if __name__ == "__main__": | |
iterations = 10 | |
np_simple_test = np.mean([np_simple() for _ in range(iterations)]) | |
np_item_test = np.mean([np_item() for _ in range(iterations)]) | |
np_palette_test = np.mean([np_palette() for _ in range(iterations)]) | |
print("Time taken for different methods") | |
print("NP Simple : {:.5f}s".format(np_simple_test)) | |
print("NP Item : {:.5f}s".format(np_item_test)) | |
print("NP Palette : {:.5f}s".format(np_palette_test)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment