Created
July 19, 2021 01:27
-
-
Save rexwangcc/e0c3ed1b6e332672f87ccd152a9f8260 to your computer and use it in GitHub Desktop.
A Moving Least Squares Material Point Method implementation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import taichi as ti | |
ti.init(arch=ti.gpu) | |
n_particles = 8192 | |
n_grid = 128 | |
dx = 1 / n_grid | |
dt = 2e-4 | |
p_rho = 1 | |
p_vol = (dx * 0.5)**2 | |
p_mass = p_vol * p_rho | |
gravity = 9.8 | |
bound = 3 | |
E = 400 | |
x = ti.Vector.field(2, float, n_particles) | |
v = ti.Vector.field(2, float, n_particles) | |
C = ti.Matrix.field(2, 2, float, n_particles) | |
J = ti.field(float, n_particles) | |
grid_v = ti.Vector.field(2, float, (n_grid, n_grid)) | |
grid_m = ti.field(float, (n_grid, n_grid)) | |
@ti.kernel | |
def substep(): | |
for i, j in grid_m: | |
grid_v[i, j] = [0, 0] | |
grid_m[i, j] = 0 | |
for p in x: | |
Xp = x[p] / dx | |
base = int(Xp - 0.5) | |
fx = Xp - base | |
w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2] | |
stress = -dt * 4 * E * p_vol * (J[p] - 1) / dx**2 | |
affine = ti.Matrix([[stress, 0], [0, stress]]) + p_mass * C[p] | |
for i, j in ti.static(ti.ndrange(3, 3)): | |
offset = ti.Vector([i, j]) | |
dpos = (offset - fx) * dx | |
weight = w[i].x * w[j].y | |
grid_v[base + offset] += weight * (p_mass * v[p] + affine @ dpos) | |
grid_m[base + offset] += weight * p_mass | |
for i, j in grid_m: | |
if grid_m[i, j] > 0: | |
grid_v[i, j] /= grid_m[i, j] | |
grid_v[i, j].y -= dt * gravity | |
if i < bound and grid_v[i, j].x < 0: | |
grid_v[i, j].x = 0 | |
if i > n_grid - bound and grid_v[i, j].x > 0: | |
grid_v[i, j].x = 0 | |
if j < bound and grid_v[i, j].y < 0: | |
grid_v[i, j].y = 0 | |
if j > n_grid - bound and grid_v[i, j].y > 0: | |
grid_v[i, j].y = 0 | |
for p in x: | |
Xp = x[p] / dx | |
base = int(Xp - 0.5) | |
fx = Xp - base | |
w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2] | |
new_v = ti.Vector.zero(float, 2) | |
new_C = ti.Matrix.zero(float, 2, 2) | |
for i, j in ti.static(ti.ndrange(3, 3)): | |
offset = ti.Vector([i, j]) | |
dpos = (offset - fx) * dx | |
weight = w[i].x * w[j].y | |
g_v = grid_v[base + offset] | |
new_v += weight * g_v | |
new_C += 4 * weight * g_v.outer_product(dpos) / dx**2 | |
v[p] = new_v | |
x[p] += dt * v[p] | |
J[p] *= 1 + dt * new_C.trace() | |
C[p] = new_C | |
@ti.kernel | |
def init(): | |
for i in range(n_particles): | |
x[i] = [ti.random() * 0.4 + 0.2, ti.random() * 0.4 + 0.2] | |
v[i] = [0, -1] | |
J[i] = 1 | |
init() | |
gui = ti.GUI('MPM88') | |
while gui.running and not gui.get_event(gui.ESCAPE): | |
for s in range(50): | |
substep() | |
gui.clear(0x112F41) | |
gui.circles(x.to_numpy(), radius=1.5, color=0x068587) | |
gui.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment