Last active
December 27, 2015 14:19
-
-
Save rgbkrk/7340130 to your computer and use it in GitHub Desktop.
Bring up a performance instance, download Expedia data from Kaggle
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
10:19:27 ~$ nova keypair-add --pub-key ~/.ssh/id_rsa.pub kyle | |
10:19:43 ~$ nova boot perf_kaggle --image dee7f62b-cbb1-4fdc-8dc5-33e408d8c599 --flavor performance2-15 --poll --key-name kyle |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Wise to update first | |
sudo apt-get update | |
# Pre-requisites to download | |
sudo apt-get install -y unzip git wget curl | |
# Exported cookies via the Chrome to cookie.txt | |
wget --load-cookies=cookies.txt http://www.kaggle.com/c/expedia-personalized-sort/download/data.zip | |
wget --load-cookies=cookies.txt http://www.kaggle.com/c/expedia-personalized-sort/download/basicPythonBenchmark.zip | |
wget --load-cookies=cookies.txt http://www.kaggle.com/c/expedia-personalized-sort/download/testOrderBenchmark.zip | |
wget --load-cookies=cookies.txt http://www.kaggle.com/c/expedia-personalized-sort/download/randomBenchmark.zip | |
# unzip 'em all | |
unzip '*.zip' | |
# Pre-requisites for the Python benchmark | |
sudo apt-get install -y build-essential python-dev python-numpy python-setuptools python-scipy libatlas-dev liblapack3 libatlas3-base gcc g++ gfortran | |
# setuptools then pip | |
wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py -O - | python2.7 | |
curl --show-error --retry 5 https://raw.github.com/pypa/pip/master/contrib/get-pip.py | python2.7 | |
# Virtualenvburrito | |
curl -s https://raw.github.com/brainsik/virtualenv-burrito/master/virtualenv-burrito.sh | $SHELL | |
source $HOME/.venvburrito/startup.sh | |
mkvirtualenv expedia_benchmark | |
# The basic packages we need, just for the benchmarks | |
pip install numpy scipy scikit-learn pandas | |
# Download the basic code that generated these benchmarks | |
git clone https://github.com/benhamner/ExpediaPersonalizedSortCompetition.git | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment