Example of map explained in maptimeLex Introduction to D3.js Web Mapping Through 7 Simple Maps. Based off example by tmcw.
Last active
August 29, 2015 14:23
-
-
Save rgdonohue/bf9c4c7e94da7f794a9e to your computer and use it in GitHub Desktop.
A D3 county choropleth map of Kentucky oil or gas wells
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<html> | |
<head> | |
<meta charset="utf-8"> | |
<title>A D3 county choropleth map of Kentucky oil or gas wells</title> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/queue-async/1.0.7/queue.min.js"></script> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/topojson/1.6.19/topojson.min.js"></script> | |
<script src="simple_statistics.js"></script> | |
<link href="http://fonts.googleapis.com/css?family=Montserrat" rel="stylesheet" type="text/css"> | |
<style> | |
body { | |
padding: 0; | |
margin: 0; | |
background: whitesmoke; | |
} | |
h1 { | |
position: absolute; | |
left: 20px; | |
top: 10px; | |
font-family: "Proxima Nova", Montserrat, sans-serif; | |
font-size: 2em; | |
font-weight: 100; | |
color: #005DAA; /* offical UK Kentucky blue */ | |
} | |
.county { | |
stroke: #fff; | |
} | |
</style> | |
</head> | |
<body> | |
<h1>Kentucky Counties Oil (or Gas) Wells by County</h1> | |
<script> | |
var width = 900, | |
height = 600; | |
var svg = d3.select( "body" ) | |
.append( "svg" ) | |
.attr( "width", width ) | |
.attr( "height", height ); | |
var projection = d3.geo.albers() | |
.center([0, 37.8]) | |
.rotate([85.8,0]) | |
.scale(8000) | |
.translate([width / 2, height / 2]); | |
var geoPath = d3.geo.path() | |
.projection(projection); | |
queue() | |
.defer(d3.json, "ky-counties.json") | |
.await(ready); | |
function ready(error, counties){ | |
var attribute = "gas_wells"; // alternative is "oil_wells" | |
var breaks = ss.jenks(counties.objects.counties.geometries.map(function(d) { | |
return d.properties[attribute]/d.properties.ALAND; | |
}), 5); | |
breaks.shift(); // remove min value from breaks Array before applying to domain | |
breaks.pop(); // same for max | |
var colors = ["#feedde","#fdbe85","#fd8d3c","#e6550d","#a63603"]; | |
var jenks = d3.scale.threshold() | |
.domain(breaks) | |
.range(colors); | |
svg.append("g") | |
.selectAll("path") | |
.data( topojson.feature(counties, counties.objects.counties).features) | |
.enter() | |
.append("path") | |
.attr( "d", geoPath ) | |
.attr("class","county") | |
.attr( "fill", function(d){ | |
return jenks(d.properties[attribute]/d.properties.ALAND); | |
}); | |
} | |
</script> | |
</body> | |
</html> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'use strict'; | |
(function(f) { | |
if (typeof exports === 'object' && typeof module !== 'undefined'){ | |
module.exports = f(); | |
} else if (typeof define === 'function' && define.amd) { | |
define([], f); | |
} else { | |
var g; | |
if (typeof window !== 'undefined') { | |
g = window; | |
} else if (typeof global !== 'undefined') { | |
g = global; | |
} else if (typeof self !== 'undefined'){ | |
g = self; | |
} else { | |
g = this; | |
} | |
g.ss = f(); | |
} | |
}(function() { | |
// # simple-statistics | |
// | |
// A simple, literate statistics system. | |
var ss = {}; | |
// We use `ε`, epsilon, as a stopping criterion when we want to iterate | |
// until we're "close enough". | |
var epsilon = 0.0001; | |
// # [Linear Regression](http://en.wikipedia.org/wiki/Linear_regression) | |
// | |
// [Simple linear regression](http://en.wikipedia.org/wiki/Simple_linear_regression) | |
// is a simple way to find a fitted line | |
// between a set of coordinates. | |
function linear_regression() { | |
var linreg = {}, | |
data = []; | |
// Assign data to the model. Data is assumed to be an array. | |
linreg.data = function(x) { | |
if (!arguments.length) return data; | |
data = x.slice(); | |
return linreg; | |
}; | |
// Calculate the slope and y-intercept of the regression line | |
// by calculating the least sum of squares | |
linreg.mb = function() { | |
var m, b; | |
// Store data length in a local variable to reduce | |
// repeated object property lookups | |
var data_length = data.length; | |
//if there's only one point, arbitrarily choose a slope of 0 | |
//and a y-intercept of whatever the y of the initial point is | |
if (data_length === 1) { | |
m = 0; | |
b = data[0][1]; | |
} else { | |
// Initialize our sums and scope the `m` and `b` | |
// variables that define the line. | |
var sum_x = 0, sum_y = 0, | |
sum_xx = 0, sum_xy = 0; | |
// Use local variables to grab point values | |
// with minimal object property lookups | |
var point, x, y; | |
// Gather the sum of all x values, the sum of all | |
// y values, and the sum of x^2 and (x*y) for each | |
// value. | |
// | |
// In math notation, these would be SS_x, SS_y, SS_xx, and SS_xy | |
for (var i = 0; i < data_length; i++) { | |
point = data[i]; | |
x = point[0]; | |
y = point[1]; | |
sum_x += x; | |
sum_y += y; | |
sum_xx += x * x; | |
sum_xy += x * y; | |
} | |
// `m` is the slope of the regression line | |
m = ((data_length * sum_xy) - (sum_x * sum_y)) / | |
((data_length * sum_xx) - (sum_x * sum_x)); | |
// `b` is the y-intercept of the line. | |
b = (sum_y / data_length) - ((m * sum_x) / data_length); | |
} | |
// Return both values as an object. | |
return { m: m, b: b }; | |
}; | |
// a shortcut for simply getting the slope of the regression line | |
linreg.m = function() { | |
return linreg.mb().m; | |
}; | |
// a shortcut for simply getting the y-intercept of the regression | |
// line. | |
linreg.b = function() { | |
return linreg.mb().b; | |
}; | |
// ## Fitting The Regression Line | |
// | |
// This is called after `.data()` and returns the | |
// equation `y = f(x)` which gives the position | |
// of the regression line at each point in `x`. | |
linreg.line = function() { | |
// Get the slope, `m`, and y-intercept, `b`, of the line. | |
var mb = linreg.mb(), | |
m = mb.m, | |
b = mb.b; | |
// Return a function that computes a `y` value for each | |
// x value it is given, based on the values of `b` and `a` | |
// that we just computed. | |
return function(x) { | |
return b + (m * x); | |
}; | |
}; | |
return linreg; | |
} | |
// # [R Squared](http://en.wikipedia.org/wiki/Coefficient_of_determination) | |
// | |
// The r-squared value of data compared with a function `f` | |
// is the sum of the squared differences between the prediction | |
// and the actual value. | |
function r_squared(data, f) { | |
if (data.length < 2) return 1; | |
// Compute the average y value for the actual | |
// data set in order to compute the | |
// _total sum of squares_ | |
var sum = 0, average; | |
for (var i = 0; i < data.length; i++) { | |
sum += data[i][1]; | |
} | |
average = sum / data.length; | |
// Compute the total sum of squares - the | |
// squared difference between each point | |
// and the average of all points. | |
var sum_of_squares = 0; | |
for (var j = 0; j < data.length; j++) { | |
sum_of_squares += Math.pow(average - data[j][1], 2); | |
} | |
// Finally estimate the error: the squared | |
// difference between the estimate and the actual data | |
// value at each point. | |
var err = 0; | |
for (var k = 0; k < data.length; k++) { | |
err += Math.pow(data[k][1] - f(data[k][0]), 2); | |
} | |
// As the error grows larger, its ratio to the | |
// sum of squares increases and the r squared | |
// value grows lower. | |
return 1 - (err / sum_of_squares); | |
} | |
// # [Bayesian Classifier](http://en.wikipedia.org/wiki/Naive_Bayes_classifier) | |
// | |
// This is a naïve bayesian classifier that takes | |
// singly-nested objects. | |
function bayesian() { | |
// The `bayes_model` object is what will be exposed | |
// by this closure, with all of its extended methods, and will | |
// have access to all scope variables, like `total_count`. | |
var bayes_model = {}, | |
// The number of items that are currently | |
// classified in the model | |
total_count = 0, | |
// Every item classified in the model | |
data = {}; | |
// ## Train | |
// Train the classifier with a new item, which has a single | |
// dimension of Javascript literal keys and values. | |
bayes_model.train = function(item, category) { | |
// If the data object doesn't have any values | |
// for this category, create a new object for it. | |
if (!data[category]) data[category] = {}; | |
// Iterate through each key in the item. | |
for (var k in item) { | |
var v = item[k]; | |
// Initialize the nested object `data[category][k][item[k]]` | |
// with an object of keys that equal 0. | |
if (data[category][k] === undefined) data[category][k] = {}; | |
if (data[category][k][v] === undefined) data[category][k][v] = 0; | |
// And increment the key for this key/value combination. | |
data[category][k][item[k]]++; | |
} | |
// Increment the number of items classified | |
total_count++; | |
}; | |
// ## Score | |
// Generate a score of how well this item matches all | |
// possible categories based on its attributes | |
bayes_model.score = function(item) { | |
// Initialize an empty array of odds per category. | |
var odds = {}, category; | |
// Iterate through each key in the item, | |
// then iterate through each category that has been used | |
// in previous calls to `.train()` | |
for (var k in item) { | |
var v = item[k]; | |
for (category in data) { | |
// Create an empty object for storing key - value combinations | |
// for this category. | |
if (odds[category] === undefined) odds[category] = {}; | |
// If this item doesn't even have a property, it counts for nothing, | |
// but if it does have the property that we're looking for from | |
// the item to categorize, it counts based on how popular it is | |
// versus the whole population. | |
if (data[category][k]) { | |
odds[category][k + '_' + v] = (data[category][k][v] || 0) / total_count; | |
} else { | |
odds[category][k + '_' + v] = 0; | |
} | |
} | |
} | |
// Set up a new object that will contain sums of these odds by category | |
var odds_sums = {}; | |
for (category in odds) { | |
// Tally all of the odds for each category-combination pair - | |
// the non-existence of a category does not add anything to the | |
// score. | |
for (var combination in odds[category]) { | |
if (odds_sums[category] === undefined) odds_sums[category] = 0; | |
odds_sums[category] += odds[category][combination]; | |
} | |
} | |
return odds_sums; | |
}; | |
// Return the completed model. | |
return bayes_model; | |
} | |
// # [Perceptron Classifier](http://en.wikipedia.org/wiki/Perceptron) | |
// | |
// This is a single-layer perceptron classifier that takes | |
// arrays of numbers and predicts whether they should be classified | |
// as either 0 or 1 (negative or positive examples). | |
function perceptron() { | |
var perceptron_model = {}, | |
// The weights, or coefficients of the model; | |
// weights are only populated when training with data. | |
weights = [], | |
// The bias term, or intercept; it is also a weight but | |
// it's stored separately for convenience as it is always | |
// multiplied by one. | |
bias = 0; | |
// ## Predict | |
// Use an array of features with the weight array and bias | |
// to predict whether an example is labeled 0 or 1. | |
perceptron_model.predict = function(features) { | |
// Only predict if previously trained | |
// on the same size feature array(s). | |
if (features.length !== weights.length) return null; | |
// Calculate the sum of features times weights, | |
// with the bias added (implicitly times one). | |
var score = 0; | |
for (var i = 0; i < weights.length; i++) { | |
score += weights[i] * features[i]; | |
} | |
score += bias; | |
// Classify as 1 if the score is over 0, otherwise 0. | |
return score > 0 ? 1 : 0; | |
}; | |
// ## Train | |
// Train the classifier with a new example, which is | |
// a numeric array of features and a 0 or 1 label. | |
perceptron_model.train = function(features, label) { | |
// Require that only labels of 0 or 1 are considered. | |
if (label !== 0 && label !== 1) return null; | |
// The length of the feature array determines | |
// the length of the weight array. | |
// The perceptron will continue learning as long as | |
// it keeps seeing feature arrays of the same length. | |
// When it sees a new data shape, it initializes. | |
if (features.length !== weights.length) { | |
weights = features; | |
bias = 1; | |
} | |
// Make a prediction based on current weights. | |
var prediction = perceptron_model.predict(features); | |
// Update the weights if the prediction is wrong. | |
if (prediction !== label) { | |
var gradient = label - prediction; | |
for (var i = 0; i < weights.length; i++) { | |
weights[i] += gradient * features[i]; | |
} | |
bias += gradient; | |
} | |
return perceptron_model; | |
}; | |
// Conveniently access the weights array. | |
perceptron_model.weights = function() { | |
return weights; | |
}; | |
// Conveniently access the bias. | |
perceptron_model.bias = function() { | |
return bias; | |
}; | |
// Return the completed model. | |
return perceptron_model; | |
} | |
// # sum | |
// | |
// is simply the result of adding all numbers | |
// together, starting from zero. | |
// | |
// This runs on `O(n)`, linear time in respect to the array | |
function sum(x) { | |
var value = 0; | |
for (var i = 0; i < x.length; i++) { | |
value += x[i]; | |
} | |
return value; | |
} | |
// # mean | |
// | |
// is the sum over the number of values | |
// | |
// This runs on `O(n)`, linear time in respect to the array | |
function mean(x) { | |
// The mean of no numbers is null | |
if (x.length === 0) return null; | |
return sum(x) / x.length; | |
} | |
// # geometric mean | |
// | |
// a mean function that is more useful for numbers in different | |
// ranges. | |
// | |
// this is the nth root of the input numbers multiplied by each other | |
// | |
// This runs on `O(n)`, linear time in respect to the array | |
function geometric_mean(x) { | |
// The mean of no numbers is null | |
if (x.length === 0) return null; | |
// the starting value. | |
var value = 1; | |
for (var i = 0; i < x.length; i++) { | |
// the geometric mean is only valid for positive numbers | |
if (x[i] <= 0) return null; | |
// repeatedly multiply the value by each number | |
value *= x[i]; | |
} | |
return Math.pow(value, 1 / x.length); | |
} | |
// # harmonic mean | |
// | |
// a mean function typically used to find the average of rates | |
// | |
// this is the reciprocal of the arithmetic mean of the reciprocals | |
// of the input numbers | |
// | |
// This runs on `O(n)`, linear time in respect to the array | |
function harmonic_mean(x) { | |
// The mean of no numbers is null | |
if (x.length === 0) return null; | |
var reciprocal_sum = 0; | |
for (var i = 0; i < x.length; i++) { | |
// the harmonic mean is only valid for positive numbers | |
if (x[i] <= 0) return null; | |
reciprocal_sum += 1 / x[i]; | |
} | |
// divide n by the the reciprocal sum | |
return x.length / reciprocal_sum; | |
} | |
// root mean square (RMS) | |
// | |
// a mean function used as a measure of the magnitude of a set | |
// of numbers, regardless of their sign | |
// | |
// this is the square root of the mean of the squares of the | |
// input numbers | |
// | |
// This runs on `O(n)`, linear time in respect to the array | |
function root_mean_square(x) { | |
if (x.length === 0) return null; | |
var sum_of_squares = 0; | |
for (var i = 0; i < x.length; i++) { | |
sum_of_squares += Math.pow(x[i], 2); | |
} | |
return Math.sqrt(sum_of_squares / x.length); | |
} | |
// # min | |
// | |
// This is simply the minimum number in the set. | |
// | |
// This runs on `O(n)`, linear time in respect to the array | |
function min(x) { | |
var value; | |
for (var i = 0; i < x.length; i++) { | |
// On the first iteration of this loop, min is | |
// undefined and is thus made the minimum element in the array | |
if (x[i] < value || value === undefined) value = x[i]; | |
} | |
return value; | |
} | |
// # max | |
// | |
// This is simply the maximum number in the set. | |
// | |
// This runs on `O(n)`, linear time in respect to the array | |
function max(x) { | |
var value; | |
for (var i = 0; i < x.length; i++) { | |
// On the first iteration of this loop, max is | |
// undefined and is thus made the maximum element in the array | |
if (x[i] > value || value === undefined) value = x[i]; | |
} | |
return value; | |
} | |
// # [variance](http://en.wikipedia.org/wiki/Variance) | |
// | |
// is the sum of squared deviations from the mean | |
// | |
// depends on `mean()` | |
function variance(x) { | |
// The variance of no numbers is null | |
if (x.length === 0) return null; | |
var mean_value = mean(x), | |
deviations = []; | |
// Make a list of squared deviations from the mean. | |
for (var i = 0; i < x.length; i++) { | |
deviations.push(Math.pow(x[i] - mean_value, 2)); | |
} | |
// Find the mean value of that list | |
return mean(deviations); | |
} | |
// # [standard deviation](http://en.wikipedia.org/wiki/Standard_deviation) | |
// | |
// is just the square root of the variance. | |
// | |
// depends on `variance()` | |
function standard_deviation(x) { | |
// The standard deviation of no numbers is null | |
if (x.length === 0) return null; | |
return Math.sqrt(variance(x)); | |
} | |
// The sum of deviations to the Nth power. | |
// When n=2 it's the sum of squared deviations. | |
// When n=3 it's the sum of cubed deviations. | |
// | |
// depends on `mean()` | |
function sum_nth_power_deviations(x, n) { | |
var mean_value = mean(x), | |
sum = 0; | |
for (var i = 0; i < x.length; i++) { | |
sum += Math.pow(x[i] - mean_value, n); | |
} | |
return sum; | |
} | |
// # [variance](http://en.wikipedia.org/wiki/Variance) | |
// | |
// is the sum of squared deviations from the mean | |
// | |
// depends on `sum_nth_power_deviations` | |
function sample_variance(x) { | |
// The variance of no numbers is null | |
if (x.length <= 1) return null; | |
var sum_squared_deviations_value = sum_nth_power_deviations(x, 2); | |
// Find the mean value of that list | |
return sum_squared_deviations_value / (x.length - 1); | |
} | |
// # [standard deviation](http://en.wikipedia.org/wiki/Standard_deviation) | |
// | |
// is just the square root of the variance. | |
// | |
// depends on `sample_variance()` | |
function sample_standard_deviation(x) { | |
// The standard deviation of no numbers is null | |
if (x.length <= 1) return null; | |
return Math.sqrt(sample_variance(x)); | |
} | |
// # [covariance](http://en.wikipedia.org/wiki/Covariance) | |
// | |
// sample covariance of two datasets: | |
// how much do the two datasets move together? | |
// x and y are two datasets, represented as arrays of numbers. | |
// | |
// depends on `mean()` | |
function sample_covariance(x, y) { | |
// The two datasets must have the same length which must be more than 1 | |
if (x.length <= 1 || x.length !== y.length) { | |
return null; | |
} | |
// determine the mean of each dataset so that we can judge each | |
// value of the dataset fairly as the difference from the mean. this | |
// way, if one dataset is [1, 2, 3] and [2, 3, 4], their covariance | |
// does not suffer because of the difference in absolute values | |
var xmean = mean(x), | |
ymean = mean(y), | |
sum = 0; | |
// for each pair of values, the covariance increases when their | |
// difference from the mean is associated - if both are well above | |
// or if both are well below | |
// the mean, the covariance increases significantly. | |
for (var i = 0; i < x.length; i++) { | |
sum += (x[i] - xmean) * (y[i] - ymean); | |
} | |
// the covariance is weighted by the length of the datasets. | |
return sum / (x.length - 1); | |
} | |
// # [correlation](http://en.wikipedia.org/wiki/Correlation_and_dependence) | |
// | |
// Gets a measure of how correlated two datasets are, between -1 and 1 | |
// | |
// depends on `sample_standard_deviation()` and `sample_covariance()` | |
function sample_correlation(x, y) { | |
var cov = sample_covariance(x, y), | |
xstd = sample_standard_deviation(x), | |
ystd = sample_standard_deviation(y); | |
if (cov === null || xstd === null || ystd === null) { | |
return null; | |
} | |
return cov / xstd / ystd; | |
} | |
// # [median](http://en.wikipedia.org/wiki/Median) | |
// | |
// The middle number of a list. This is often a good indicator of 'the middle' | |
// when there are outliers that skew the `mean()` value. | |
function median(x) { | |
// The median of an empty list is null | |
if (x.length === 0) return null; | |
// Sorting the array makes it easy to find the center, but | |
// use `.slice()` to ensure the original array `x` is not modified | |
var sorted = x.slice().sort(function (a, b) { return a - b; }); | |
// If the length of the list is odd, it's the central number | |
if (sorted.length % 2 === 1) { | |
return sorted[(sorted.length - 1) / 2]; | |
// Otherwise, the median is the average of the two numbers | |
// at the center of the list | |
} else { | |
var a = sorted[(sorted.length / 2) - 1]; | |
var b = sorted[(sorted.length / 2)]; | |
return (a + b) / 2; | |
} | |
} | |
// # [mode](http://bit.ly/W5K4Yt) | |
// | |
// The mode is the number that appears in a list the highest number of times. | |
// There can be multiple modes in a list: in the event of a tie, this | |
// algorithm will return the most recently seen mode. | |
// | |
// This implementation is inspired by [science.js](https://github.com/jasondavies/science.js/blob/master/src/stats/mode.js) | |
// | |
// This runs on `O(n)`, linear time in respect to the array | |
function mode(x) { | |
// Handle edge cases: | |
// The median of an empty list is null | |
if (x.length === 0) return null; | |
else if (x.length === 1) return x[0]; | |
// Sorting the array lets us iterate through it below and be sure | |
// that every time we see a new number it's new and we'll never | |
// see the same number twice | |
var sorted = x.slice().sort(function (a, b) { return a - b; }); | |
// This assumes it is dealing with an array of size > 1, since size | |
// 0 and 1 are handled immediately. Hence it starts at index 1 in the | |
// array. | |
var last = sorted[0], | |
// store the mode as we find new modes | |
value, | |
// store how many times we've seen the mode | |
max_seen = 0, | |
// how many times the current candidate for the mode | |
// has been seen | |
seen_this = 1; | |
// end at sorted.length + 1 to fix the case in which the mode is | |
// the highest number that occurs in the sequence. the last iteration | |
// compares sorted[i], which is undefined, to the highest number | |
// in the series | |
for (var i = 1; i < sorted.length + 1; i++) { | |
// we're seeing a new number pass by | |
if (sorted[i] !== last) { | |
// the last number is the new mode since we saw it more | |
// often than the old one | |
if (seen_this > max_seen) { | |
max_seen = seen_this; | |
value = last; | |
} | |
seen_this = 1; | |
last = sorted[i]; | |
// if this isn't a new number, it's one more occurrence of | |
// the potential mode | |
} else { seen_this++; } | |
} | |
return value; | |
} | |
// # [t-test](http://en.wikipedia.org/wiki/Student's_t-test) | |
// | |
// This is to compute a one-sample t-test, comparing the mean | |
// of a sample to a known value, x. | |
// | |
// in this case, we're trying to determine whether the | |
// population mean is equal to the value that we know, which is `x` | |
// here. usually the results here are used to look up a | |
// [p-value](http://en.wikipedia.org/wiki/P-value), which, for | |
// a certain level of significance, will let you determine that the | |
// null hypothesis can or cannot be rejected. | |
// | |
// Depends on `standard_deviation()` and `mean()` | |
function t_test(sample, x) { | |
// The mean of the sample | |
var sample_mean = mean(sample); | |
// The standard deviation of the sample | |
var sd = standard_deviation(sample); | |
// Square root the length of the sample | |
var rootN = Math.sqrt(sample.length); | |
// Compute the known value against the sample, | |
// returning the t value | |
return (sample_mean - x) / (sd / rootN); | |
} | |
// # [2-sample t-test](http://en.wikipedia.org/wiki/Student's_t-test) | |
// | |
// This is to compute two sample t-test. | |
// Tests whether "mean(X)-mean(Y) = difference", ( | |
// in the most common case, we often have `difference == 0` to test if two samples | |
// are likely to be taken from populations with the same mean value) with | |
// no prior knowledge on standard deviations of both samples | |
// other than the fact that they have the same standard deviation. | |
// | |
// Usually the results here are used to look up a | |
// [p-value](http://en.wikipedia.org/wiki/P-value), which, for | |
// a certain level of significance, will let you determine that the | |
// null hypothesis can or cannot be rejected. | |
// | |
// `diff` can be omitted if it equals 0. | |
// | |
// [This is used to confirm or deny](http://www.monarchlab.org/Lab/Research/Stats/2SampleT.aspx) | |
// a null hypothesis that the two populations that have been sampled into | |
// `sample_x` and `sample_y` are equal to each other. | |
// | |
// Depends on `sample_variance()` and `mean()` | |
function t_test_two_sample(sample_x, sample_y, difference) { | |
var n = sample_x.length, | |
m = sample_y.length; | |
// If either sample doesn't actually have any values, we can't | |
// compute this at all, so we return `null`. | |
if (!n || !m) return null; | |
// default difference (mu) is zero | |
if (!difference) difference = 0; | |
var meanX = mean(sample_x), | |
meanY = mean(sample_y); | |
var weightedVariance = ((n - 1) * sample_variance(sample_x) + | |
(m - 1) * sample_variance(sample_y)) / (n + m - 2); | |
return (meanX - meanY - difference) / | |
Math.sqrt(weightedVariance * (1 / n + 1 / m)); | |
} | |
// # chunk | |
// | |
// Split an array into chunks of a specified size. This function | |
// has the same behavior as [PHP's array_chunk](http://php.net/manual/en/function.array-chunk.php) | |
// function, and thus will insert smaller-sized chunks at the end if | |
// the input size is not divisible by the chunk size. | |
// | |
// `sample` is expected to be an array, and `chunkSize` a number. | |
// The `sample` array can contain any kind of data. | |
function chunk(sample, chunkSize) { | |
// a list of result chunks, as arrays in an array | |
var output = []; | |
// `chunkSize` must be zero or higher - otherwise the loop below, | |
// in which we call `start += chunkSize`, will loop infinitely. | |
// So, we'll detect and return null in that case to indicate | |
// invalid input. | |
if (chunkSize <= 0) { | |
return null; | |
} | |
// `start` is the index at which `.slice` will start selecting | |
// new array elements | |
for (var start = 0; start < sample.length; start += chunkSize) { | |
// for each chunk, slice that part of the array and add it | |
// to the output. The `.slice` function does not change | |
// the original array. | |
output.push(sample.slice(start, start + chunkSize)); | |
} | |
return output; | |
} | |
// # shuffle_in_place | |
// | |
// A [Fisher-Yates shuffle](http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle) | |
// in-place - which means that it will change the order of the original | |
// array by reference. | |
function shuffle_in_place(sample, randomSource) { | |
// a custom random number source can be provided if you want to use | |
// a fixed seed or another random number generator, like | |
// [random-js](https://www.npmjs.org/package/random-js) | |
randomSource = randomSource || Math.random; | |
// store the current length of the sample to determine | |
// when no elements remain to shuffle. | |
var length = sample.length; | |
// temporary is used to hold an item when it is being | |
// swapped between indices. | |
var temporary; | |
// The index to swap at each stage. | |
var index; | |
// While there are still items to shuffle | |
while (length > 0) { | |
// chose a random index within the subset of the array | |
// that is not yet shuffled | |
index = Math.floor(randomSource() * length--); | |
// store the value that we'll move temporarily | |
temporary = sample[length]; | |
// swap the value at `sample[length]` with `sample[index]` | |
sample[length] = sample[index]; | |
sample[index] = temporary; | |
} | |
return sample; | |
} | |
// # shuffle | |
// | |
// A [Fisher-Yates shuffle](http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle) | |
// is a fast way to create a random permutation of a finite set. | |
function shuffle(sample, randomSource) { | |
// slice the original array so that it is not modified | |
sample = sample.slice(); | |
// and then shuffle that shallow-copied array, in place | |
return shuffle_in_place(sample.slice(), randomSource); | |
} | |
// # sample | |
// | |
// Create a [simple random sample](http://en.wikipedia.org/wiki/Simple_random_sample) | |
// from a given array of `n` elements. | |
function sample(array, n, randomSource) { | |
// shuffle the original array using a fisher-yates shuffle | |
var shuffled = shuffle(array, randomSource); | |
// and then return a subset of it - the first `n` elements. | |
return shuffled.slice(0, n); | |
} | |
// # quantile | |
// | |
// This is the internal implementation of quantiles: when you know | |
// that the order is sorted, you don't need to re-sort it, and the computations | |
// are much faster. | |
function quantile_sorted(sample, p) { | |
var idx = (sample.length) * p; | |
if (p < 0 || p > 1) { | |
return null; | |
} else if (p === 1) { | |
// If p is 1, directly return the last element | |
return sample[sample.length - 1]; | |
} else if (p === 0) { | |
// If p is 0, directly return the first element | |
return sample[0]; | |
} else if (idx % 1 !== 0) { | |
// If p is not integer, return the next element in array | |
return sample[Math.ceil(idx) - 1]; | |
} else if (sample.length % 2 === 0) { | |
// If the list has even-length, we'll take the average of this number | |
// and the next value, if there is one | |
return (sample[idx - 1] + sample[idx]) / 2; | |
} else { | |
// Finally, in the simple case of an integer value | |
// with an odd-length list, return the sample value at the index. | |
return sample[idx]; | |
} | |
} | |
// # quantile | |
// | |
// This is a population quantile, since we assume to know the entire | |
// dataset in this library. Thus I'm trying to follow the | |
// [Quantiles of a Population](http://en.wikipedia.org/wiki/Quantile#Quantiles_of_a_population) | |
// algorithm from wikipedia. | |
// | |
// Sample is a one-dimensional array of numbers, | |
// and p is either a decimal number from 0 to 1 or an array of decimal | |
// numbers from 0 to 1. | |
// In terms of a k/q quantile, p = k/q - it's just dealing with fractions or dealing | |
// with decimal values. | |
// When p is an array, the result of the function is also an array containing the appropriate | |
// quantiles in input order | |
function quantile(sample, p) { | |
// We can't derive quantiles from an empty list | |
if (sample.length === 0) return null; | |
// Sort a copy of the array. We'll need a sorted array to index | |
// the values in sorted order. | |
var sorted = sample.slice().sort(function (a, b) { return a - b; }); | |
if (p.length) { | |
// Initialize the result array | |
var results = []; | |
// For each requested quantile | |
for (var i = 0; i < p.length; i++) { | |
results[i] = quantile_sorted(sorted, p[i]); | |
} | |
return results; | |
} else { | |
return quantile_sorted(sorted, p); | |
} | |
} | |
// # [Interquartile range](http://en.wikipedia.org/wiki/Interquartile_range) | |
// | |
// A measure of statistical dispersion, or how scattered, spread, or | |
// concentrated a distribution is. It's computed as the difference between | |
// the third quartile and first quartile. | |
function iqr(sample) { | |
// We can't derive quantiles from an empty list | |
if (sample.length === 0) return null; | |
// Interquartile range is the span between the upper quartile, | |
// at `0.75`, and lower quartile, `0.25` | |
return quantile(sample, 0.75) - quantile(sample, 0.25); | |
} | |
// # [Median Absolute Deviation](http://en.wikipedia.org/wiki/Median_absolute_deviation) | |
// | |
// The Median Absolute Deviation (MAD) is a robust measure of statistical | |
// dispersion. It is more resilient to outliers than the standard deviation. | |
function mad(x) { | |
// The mad of nothing is null | |
if (!x || x.length === 0) return null; | |
var median_value = median(x), | |
median_absolute_deviations = []; | |
// Make a list of absolute deviations from the median | |
for (var i = 0; i < x.length; i++) { | |
median_absolute_deviations.push(Math.abs(x[i] - median_value)); | |
} | |
// Find the median value of that list | |
return median(median_absolute_deviations); | |
} | |
// ## Compute Matrices for Jenks | |
// | |
// Compute the matrices required for Jenks breaks. These matrices | |
// can be used for any classing of data with `classes <= n_classes` | |
function jenksMatrices(data, n_classes) { | |
// in the original implementation, these matrices are referred to | |
// as `LC` and `OP` | |
// | |
// * lower_class_limits (LC): optimal lower class limits | |
// * variance_combinations (OP): optimal variance combinations for all classes | |
var lower_class_limits = [], | |
variance_combinations = [], | |
// loop counters | |
i, j, | |
// the variance, as computed at each step in the calculation | |
variance = 0; | |
// Initialize and fill each matrix with zeroes | |
for (i = 0; i < data.length + 1; i++) { | |
var tmp1 = [], tmp2 = []; | |
// despite these arrays having the same values, we need | |
// to keep them separate so that changing one does not change | |
// the other | |
for (j = 0; j < n_classes + 1; j++) { | |
tmp1.push(0); | |
tmp2.push(0); | |
} | |
lower_class_limits.push(tmp1); | |
variance_combinations.push(tmp2); | |
} | |
for (i = 1; i < n_classes + 1; i++) { | |
lower_class_limits[1][i] = 1; | |
variance_combinations[1][i] = 0; | |
// in the original implementation, 9999999 is used but | |
// since Javascript has `Infinity`, we use that. | |
for (j = 2; j < data.length + 1; j++) { | |
variance_combinations[j][i] = Infinity; | |
} | |
} | |
for (var l = 2; l < data.length + 1; l++) { | |
// `SZ` originally. this is the sum of the values seen thus | |
// far when calculating variance. | |
var sum = 0, | |
// `ZSQ` originally. the sum of squares of values seen | |
// thus far | |
sum_squares = 0, | |
// `WT` originally. This is the number of | |
w = 0, | |
// `IV` originally | |
i4 = 0; | |
// in several instances, you could say `Math.pow(x, 2)` | |
// instead of `x * x`, but this is slower in some browsers | |
// introduces an unnecessary concept. | |
for (var m = 1; m < l + 1; m++) { | |
// `III` originally | |
var lower_class_limit = l - m + 1, | |
val = data[lower_class_limit - 1]; | |
// here we're estimating variance for each potential classing | |
// of the data, for each potential number of classes. `w` | |
// is the number of data points considered so far. | |
w++; | |
// increase the current sum and sum-of-squares | |
sum += val; | |
sum_squares += val * val; | |
// the variance at this point in the sequence is the difference | |
// between the sum of squares and the total x 2, over the number | |
// of samples. | |
variance = sum_squares - (sum * sum) / w; | |
i4 = lower_class_limit - 1; | |
if (i4 !== 0) { | |
for (j = 2; j < n_classes + 1; j++) { | |
// if adding this element to an existing class | |
// will increase its variance beyond the limit, break | |
// the class at this point, setting the `lower_class_limit` | |
// at this point. | |
if (variance_combinations[l][j] >= | |
(variance + variance_combinations[i4][j - 1])) { | |
lower_class_limits[l][j] = lower_class_limit; | |
variance_combinations[l][j] = variance + | |
variance_combinations[i4][j - 1]; | |
} | |
} | |
} | |
} | |
lower_class_limits[l][1] = 1; | |
variance_combinations[l][1] = variance; | |
} | |
// return the two matrices. for just providing breaks, only | |
// `lower_class_limits` is needed, but variances can be useful to | |
// evaluate goodness of fit. | |
return { | |
lower_class_limits: lower_class_limits, | |
variance_combinations: variance_combinations | |
}; | |
} | |
// ## Pull Breaks Values for Jenks | |
// | |
// the second part of the jenks recipe: take the calculated matrices | |
// and derive an array of n breaks. | |
function jenksBreaks(data, lower_class_limits, n_classes) { | |
var k = data.length, | |
kclass = [], | |
countNum = n_classes; | |
// the calculation of classes will never include the upper | |
// bound, so we need to explicitly set it | |
kclass[n_classes] = data[data.length - 1]; | |
// the lower_class_limits matrix is used as indices into itself | |
// here: the `k` variable is reused in each iteration. | |
while (countNum > 0) { | |
kclass[countNum - 1] = data[lower_class_limits[k][countNum] - 1]; | |
k = lower_class_limits[k][countNum] - 1; | |
countNum--; | |
} | |
return kclass; | |
} | |
// # [Jenks natural breaks optimization](http://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization) | |
// | |
// Implementations: [1](http://danieljlewis.org/files/2010/06/Jenks.pdf) (python), | |
// [2](https://github.com/vvoovv/djeo-jenks/blob/master/main.js) (buggy), | |
// [3](https://github.com/simogeo/geostats/blob/master/lib/geostats.js#L407) (works) | |
// | |
// Depends on `jenksBreaks()` and `jenksMatrices()` | |
function jenks(data, n_classes) { | |
if (n_classes > data.length) return null; | |
// sort data in numerical order, since this is expected | |
// by the matrices function | |
data = data.slice().sort(function (a, b) { return a - b; }); | |
// get our basic matrices | |
var matrices = jenksMatrices(data, n_classes), | |
// we only need lower class limits here | |
lower_class_limits = matrices.lower_class_limits; | |
// extract n_classes out of the computed matrices | |
return jenksBreaks(data, lower_class_limits, n_classes); | |
} | |
// # [Skewness](http://en.wikipedia.org/wiki/Skewness) | |
// | |
// A measure of the extent to which a probability distribution of a | |
// real-valued random variable "leans" to one side of the mean. | |
// The skewness value can be positive or negative, or even undefined. | |
// | |
// Implementation is based on the adjusted Fisher-Pearson standardized | |
// moment coefficient, which is the version found in Excel and several | |
// statistical packages including Minitab, SAS and SPSS. | |
// | |
// Depends on `sum_nth_power_deviations()` and `sample_standard_deviation` | |
function sample_skewness(x) { | |
// The skewness of less than three arguments is null | |
if (x.length < 3) return null; | |
var n = x.length, | |
cubed_s = Math.pow(sample_standard_deviation(x), 3), | |
sum_cubed_deviations = sum_nth_power_deviations(x, 3); | |
return n * sum_cubed_deviations / ((n - 1) * (n - 2) * cubed_s); | |
} | |
// # Standard Normal Table | |
// A standard normal table, also called the unit normal table or Z table, | |
// is a mathematical table for the values of Φ (phi), which are the values of | |
// the cumulative distribution function of the normal distribution. | |
// It is used to find the probability that a statistic is observed below, | |
// above, or between values on the standard normal distribution, and by | |
// extension, any normal distribution. | |
// | |
// The probabilities are taken from http://en.wikipedia.org/wiki/Standard_normal_table | |
// The table used is the cumulative, and not cumulative from 0 to mean | |
// (even though the latter has 5 digits precision, instead of 4). | |
var standard_normal_table = [ | |
/* z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 */ | |
/* 0.0 */ | |
0.5000, 0.5040, 0.5080, 0.5120, 0.5160, 0.5199, 0.5239, 0.5279, 0.5319, 0.5359, | |
/* 0.1 */ | |
0.5398, 0.5438, 0.5478, 0.5517, 0.5557, 0.5596, 0.5636, 0.5675, 0.5714, 0.5753, | |
/* 0.2 */ | |
0.5793, 0.5832, 0.5871, 0.5910, 0.5948, 0.5987, 0.6026, 0.6064, 0.6103, 0.6141, | |
/* 0.3 */ | |
0.6179, 0.6217, 0.6255, 0.6293, 0.6331, 0.6368, 0.6406, 0.6443, 0.6480, 0.6517, | |
/* 0.4 */ | |
0.6554, 0.6591, 0.6628, 0.6664, 0.6700, 0.6736, 0.6772, 0.6808, 0.6844, 0.6879, | |
/* 0.5 */ | |
0.6915, 0.6950, 0.6985, 0.7019, 0.7054, 0.7088, 0.7123, 0.7157, 0.7190, 0.7224, | |
/* 0.6 */ | |
0.7257, 0.7291, 0.7324, 0.7357, 0.7389, 0.7422, 0.7454, 0.7486, 0.7517, 0.7549, | |
/* 0.7 */ | |
0.7580, 0.7611, 0.7642, 0.7673, 0.7704, 0.7734, 0.7764, 0.7794, 0.7823, 0.7852, | |
/* 0.8 */ | |
0.7881, 0.7910, 0.7939, 0.7967, 0.7995, 0.8023, 0.8051, 0.8078, 0.8106, 0.8133, | |
/* 0.9 */ | |
0.8159, 0.8186, 0.8212, 0.8238, 0.8264, 0.8289, 0.8315, 0.8340, 0.8365, 0.8389, | |
/* 1.0 */ | |
0.8413, 0.8438, 0.8461, 0.8485, 0.8508, 0.8531, 0.8554, 0.8577, 0.8599, 0.8621, | |
/* 1.1 */ | |
0.8643, 0.8665, 0.8686, 0.8708, 0.8729, 0.8749, 0.8770, 0.8790, 0.8810, 0.8830, | |
/* 1.2 */ | |
0.8849, 0.8869, 0.8888, 0.8907, 0.8925, 0.8944, 0.8962, 0.8980, 0.8997, 0.9015, | |
/* 1.3 */ | |
0.9032, 0.9049, 0.9066, 0.9082, 0.9099, 0.9115, 0.9131, 0.9147, 0.9162, 0.9177, | |
/* 1.4 */ | |
0.9192, 0.9207, 0.9222, 0.9236, 0.9251, 0.9265, 0.9279, 0.9292, 0.9306, 0.9319, | |
/* 1.5 */ | |
0.9332, 0.9345, 0.9357, 0.9370, 0.9382, 0.9394, 0.9406, 0.9418, 0.9429, 0.9441, | |
/* 1.6 */ | |
0.9452, 0.9463, 0.9474, 0.9484, 0.9495, 0.9505, 0.9515, 0.9525, 0.9535, 0.9545, | |
/* 1.7 */ | |
0.9554, 0.9564, 0.9573, 0.9582, 0.9591, 0.9599, 0.9608, 0.9616, 0.9625, 0.9633, | |
/* 1.8 */ | |
0.9641, 0.9649, 0.9656, 0.9664, 0.9671, 0.9678, 0.9686, 0.9693, 0.9699, 0.9706, | |
/* 1.9 */ | |
0.9713, 0.9719, 0.9726, 0.9732, 0.9738, 0.9744, 0.9750, 0.9756, 0.9761, 0.9767, | |
/* 2.0 */ | |
0.9772, 0.9778, 0.9783, 0.9788, 0.9793, 0.9798, 0.9803, 0.9808, 0.9812, 0.9817, | |
/* 2.1 */ | |
0.9821, 0.9826, 0.9830, 0.9834, 0.9838, 0.9842, 0.9846, 0.9850, 0.9854, 0.9857, | |
/* 2.2 */ | |
0.9861, 0.9864, 0.9868, 0.9871, 0.9875, 0.9878, 0.9881, 0.9884, 0.9887, 0.9890, | |
/* 2.3 */ | |
0.9893, 0.9896, 0.9898, 0.9901, 0.9904, 0.9906, 0.9909, 0.9911, 0.9913, 0.9916, | |
/* 2.4 */ | |
0.9918, 0.9920, 0.9922, 0.9925, 0.9927, 0.9929, 0.9931, 0.9932, 0.9934, 0.9936, | |
/* 2.5 */ | |
0.9938, 0.9940, 0.9941, 0.9943, 0.9945, 0.9946, 0.9948, 0.9949, 0.9951, 0.9952, | |
/* 2.6 */ | |
0.9953, 0.9955, 0.9956, 0.9957, 0.9959, 0.9960, 0.9961, 0.9962, 0.9963, 0.9964, | |
/* 2.7 */ | |
0.9965, 0.9966, 0.9967, 0.9968, 0.9969, 0.9970, 0.9971, 0.9972, 0.9973, 0.9974, | |
/* 2.8 */ | |
0.9974, 0.9975, 0.9976, 0.9977, 0.9977, 0.9978, 0.9979, 0.9979, 0.9980, 0.9981, | |
/* 2.9 */ | |
0.9981, 0.9982, 0.9982, 0.9983, 0.9984, 0.9984, 0.9985, 0.9985, 0.9986, 0.9986, | |
/* 3.0 */ | |
0.9987, 0.9987, 0.9987, 0.9988, 0.9988, 0.9989, 0.9989, 0.9989, 0.9990, 0.9990 | |
]; | |
// # [Gaussian error function](http://en.wikipedia.org/wiki/Error_function) | |
// | |
// The error_function(x/(sd * Math.sqrt(2))) is the probability that a value in a | |
// normal distribution with standard deviation sd is within x of the mean. | |
// | |
// This function returns a numerical approximation to the exact value. | |
function error_function(x) { | |
var t = 1 / (1 + 0.5 * Math.abs(x)); | |
var tau = t * Math.exp(-Math.pow(x, 2) - | |
1.26551223 + | |
1.00002368 * t + | |
0.37409196 * Math.pow(t, 2) + | |
0.09678418 * Math.pow(t, 3) - | |
0.18628806 * Math.pow(t, 4) + | |
0.27886807 * Math.pow(t, 5) - | |
1.13520398 * Math.pow(t, 6) + | |
1.48851587 * Math.pow(t, 7) - | |
0.82215223 * Math.pow(t, 8) + | |
0.17087277 * Math.pow(t, 9)); | |
if (x >= 0) { | |
return 1 - tau; | |
} else { | |
return tau - 1; | |
} | |
} | |
// # Inverse [Gaussian error function](http://en.wikipedia.org/wiki/Error_function) | |
// | |
// Returns a numerical approximation to the value that would have caused | |
// error_function() to return x. | |
function inverse_error_function(x) { | |
var a = (8 * (Math.PI - 3)) / (3 * Math.PI * (4 - Math.PI)); | |
var inv = Math.sqrt(Math.sqrt( | |
Math.pow(2 / (Math.PI * a) + Math.log(1 - x * x) / 2, 2) - | |
Math.log(1 - x * x) / a) - | |
(2 / (Math.PI * a) + Math.log(1 - x * x) / 2)); | |
if (x >= 0) { | |
return inv; | |
} else { | |
return -inv; | |
} | |
} | |
// We use `ε`, epsilon, as a stopping criterion when we want to iterate | |
// until we're "close enough". | |
var epsilon = 0.0001; | |
// # [Probit](http://en.wikipedia.org/wiki/Probit) | |
// | |
// This is the inverse of cumulative_std_normal_probability(), | |
// and is also known as the normal quantile function. | |
// | |
// It returns the number of standard deviations from the mean | |
// where the p'th quantile of values can be found in a normal distribution. | |
// So, for example, probit(0.5 + 0.6827/2) ≈ 1 because 68.27% of values are | |
// normally found within 1 standard deviation above or below the mean. | |
function probit(p) { | |
if (p === 0) { | |
p = epsilon; | |
} else if (p >= 1) { | |
p = 1 - epsilon; | |
} | |
return Math.sqrt(2) * inverse_error_function(2 * p - 1); | |
} | |
// # [Cumulative Standard Normal Probability](http://en.wikipedia.org/wiki/Standard_normal_table) | |
// | |
// Since probability tables cannot be | |
// printed for every normal distribution, as there are an infinite variety | |
// of normal distributions, it is common practice to convert a normal to a | |
// standard normal and then use the standard normal table to find probabilities. | |
// | |
// You can use .5 + .5 * error_function(x / Math.sqrt(2)) to calculate the probability | |
// instead of looking it up in a table. | |
function cumulative_std_normal_probability(z) { | |
// Calculate the position of this value. | |
var absZ = Math.abs(z), | |
// Each row begins with a different | |
// significant digit: 0.5, 0.6, 0.7, and so on. Each value in the table | |
// corresponds to a range of 0.01 in the input values, so the value is | |
// multiplied by 100. | |
index = Math.min(Math.round(absZ * 100), standard_normal_table.length - 1); | |
// The index we calculate must be in the table as a positive value, | |
// but we still pay attention to whether the input is positive | |
// or negative, and flip the output value as a last step. | |
if (z >= 0) { | |
return standard_normal_table[index]; | |
} else { | |
// due to floating-point arithmetic, values in the table with | |
// 4 significant figures can nevertheless end up as repeating | |
// fractions when they're computed here. | |
return +(1 - standard_normal_table[index]).toFixed(4); | |
} | |
} | |
// # [Z-Score, or Standard Score](http://en.wikipedia.org/wiki/Standard_score) | |
// | |
// The standard score is the number of standard deviations an observation | |
// or datum is above or below the mean. Thus, a positive standard score | |
// represents a datum above the mean, while a negative standard score | |
// represents a datum below the mean. It is a dimensionless quantity | |
// obtained by subtracting the population mean from an individual raw | |
// score and then dividing the difference by the population standard | |
// deviation. | |
// | |
// The z-score is only defined if one knows the population parameters; | |
// if one only has a sample set, then the analogous computation with | |
// sample mean and sample standard deviation yields the | |
// Student's t-statistic. | |
function z_score(x, mean, standard_deviation) { | |
return (x - mean) / standard_deviation; | |
} | |
// # [Factorial](https://en.wikipedia.org/wiki/Factorial) | |
// | |
// A factorial, usually written n!, is the product of all positive | |
// integers less than or equal to n. Often factorial is implemented | |
// recursively, but this iterative approach is significantly faster | |
// and simpler. | |
function factorial(n) { | |
// factorial is mathematically undefined for negative numbers | |
if (n < 0 ) { return null; } | |
// typically you'll expand the factorial function going down, like | |
// 5! = 5 * 4 * 3 * 2 * 1. This is going in the opposite direction, | |
// counting from 2 up to the number in question, and since anything | |
// multiplied by 1 is itself, the loop only needs to start at 2. | |
var accumulator = 1; | |
for (var i = 2; i <= n; i++) { | |
// for each number up to and including the number `n`, multiply | |
// the accumulator my that number. | |
accumulator *= i; | |
} | |
return accumulator; | |
} | |
// # Binomial Distribution | |
// | |
// The [Binomial Distribution](http://en.wikipedia.org/wiki/Binomial_distribution) is the discrete probability | |
// distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields | |
// success with probability `probability`. Such a success/failure experiment is also called a Bernoulli experiment or | |
// Bernoulli trial; when trials = 1, the Binomial Distribution is a Bernoulli Distribution. | |
function binomial_distribution(trials, probability) { | |
// Check that `p` is a valid probability (0 ≤ p ≤ 1), | |
// that `n` is an integer, strictly positive. | |
if (probability < 0 || probability > 1 || | |
trials <= 0 || trials % 1 !== 0) { | |
return null; | |
} | |
// a [probability mass function](https://en.wikipedia.org/wiki/Probability_mass_function) | |
function probability_mass(x, trials, probability) { | |
return factorial(trials) / | |
(factorial(x) * factorial(trials - x)) * | |
(Math.pow(probability, x) * Math.pow(1 - probability, trials - x)); | |
} | |
// We initialize `x`, the random variable, and `accumulator`, an accumulator | |
// for the cumulative distribution function to 0. `distribution_functions` | |
// is the object we'll return with the `probability_of_x` and the | |
// `cumulative_probability_of_x`, as well as the calculated mean & | |
// variance. We iterate until the `cumulative_probability_of_x` is | |
// within `epsilon` of 1.0. | |
var x = 0, | |
cumulative_probability = 0, | |
cells = {}; | |
// This algorithm iterates through each potential outcome, | |
// until the `cumulative_probability` is very close to 1, at | |
// which point we've defined the vast majority of outcomes | |
do { | |
cells[x] = probability_mass(x, trials, probability); | |
cumulative_probability += cells[x]; | |
x++; | |
// when the cumulative_probability is nearly 1, we've calculated | |
// the useful range of this distribution | |
} while (cumulative_probability < 1 - epsilon); | |
return cells; | |
} | |
// # Bernoulli Distribution | |
// | |
// The [Bernoulli distribution](http://en.wikipedia.org/wiki/Bernoulli_distribution) | |
// is the probability discrete | |
// distribution of a random variable which takes value 1 with success | |
// probability `p` and value 0 with failure | |
// probability `q` = 1 - `p`. It can be used, for example, to represent the | |
// toss of a coin, where "1" is defined to mean "heads" and "0" is defined | |
// to mean "tails" (or vice versa). It is | |
// a special case of a Binomial Distribution | |
// where `n` = 1. | |
function bernoulli_distribution(p) { | |
// Check that `p` is a valid probability (0 ≤ p ≤ 1) | |
if (p < 0 || p > 1 ) { return null; } | |
return binomial_distribution(1, p); | |
} | |
// # Poisson Distribution | |
// | |
// The [Poisson Distribution](http://en.wikipedia.org/wiki/Poisson_distribution) | |
// is a discrete probability distribution that expresses the probability | |
// of a given number of events occurring in a fixed interval of time | |
// and/or space if these events occur with a known average rate and | |
// independently of the time since the last event. | |
// | |
// The Poisson Distribution is characterized by the strictly positive | |
// mean arrival or occurrence rate, `λ`. | |
function poisson_distribution(lambda) { | |
// Check that lambda is strictly positive | |
if (lambda <= 0) { return null; } | |
// our current place in the distribution | |
var x = 0, | |
// and we keep track of the current cumulative probability, in | |
// order to know when to stop calculating chances. | |
cumulative_probability = 0, | |
// the calculated cells to be returned | |
cells = {}; | |
// a [probability mass function](https://en.wikipedia.org/wiki/Probability_mass_function) | |
function probability_mass(x, lambda) { | |
return (Math.pow(Math.E, -lambda) * Math.pow(lambda, x)) / | |
factorial(x); | |
} | |
// This algorithm iterates through each potential outcome, | |
// until the `cumulative_probability` is very close to 1, at | |
// which point we've defined the vast majority of outcomes | |
do { | |
cells[x] = probability_mass(x, lambda); | |
cumulative_probability += cells[x]; | |
x++; | |
// when the cumulative_probability is nearly 1, we've calculated | |
// the useful range of this distribution | |
} while (cumulative_probability < 1 - epsilon); | |
return cells; | |
} | |
// # Percentage Points of the χ2 (Chi-Squared) Distribution | |
// The [χ2 (Chi-Squared) Distribution](http://en.wikipedia.org/wiki/Chi-squared_distribution) is used in the common | |
// chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two | |
// criteria of classification of qualitative data, and in confidence interval estimation for a population standard | |
// deviation of a normal distribution from a sample standard deviation. | |
// | |
// Values from Appendix 1, Table III of William W. Hines & Douglas C. Montgomery, "Probability and Statistics in | |
// Engineering and Management Science", Wiley (1980). | |
var chi_squared_distribution_table = { | |
1: { 0.995: 0.00, 0.99: 0.00, 0.975: 0.00, 0.95: 0.00, 0.9: 0.02, 0.5: 0.45, 0.1: 2.71, 0.05: 3.84, 0.025: 5.02, 0.01: 6.63, 0.005: 7.88 }, | |
2: { 0.995: 0.01, 0.99: 0.02, 0.975: 0.05, 0.95: 0.10, 0.9: 0.21, 0.5: 1.39, 0.1: 4.61, 0.05: 5.99, 0.025: 7.38, 0.01: 9.21, 0.005: 10.60 }, | |
3: { 0.995: 0.07, 0.99: 0.11, 0.975: 0.22, 0.95: 0.35, 0.9: 0.58, 0.5: 2.37, 0.1: 6.25, 0.05: 7.81, 0.025: 9.35, 0.01: 11.34, 0.005: 12.84 }, | |
4: { 0.995: 0.21, 0.99: 0.30, 0.975: 0.48, 0.95: 0.71, 0.9: 1.06, 0.5: 3.36, 0.1: 7.78, 0.05: 9.49, 0.025: 11.14, 0.01: 13.28, 0.005: 14.86 }, | |
5: { 0.995: 0.41, 0.99: 0.55, 0.975: 0.83, 0.95: 1.15, 0.9: 1.61, 0.5: 4.35, 0.1: 9.24, 0.05: 11.07, 0.025: 12.83, 0.01: 15.09, 0.005: 16.75 }, | |
6: { 0.995: 0.68, 0.99: 0.87, 0.975: 1.24, 0.95: 1.64, 0.9: 2.20, 0.5: 5.35, 0.1: 10.65, 0.05: 12.59, 0.025: 14.45, 0.01: 16.81, 0.005: 18.55 }, | |
7: { 0.995: 0.99, 0.99: 1.25, 0.975: 1.69, 0.95: 2.17, 0.9: 2.83, 0.5: 6.35, 0.1: 12.02, 0.05: 14.07, 0.025: 16.01, 0.01: 18.48, 0.005: 20.28 }, | |
8: { 0.995: 1.34, 0.99: 1.65, 0.975: 2.18, 0.95: 2.73, 0.9: 3.49, 0.5: 7.34, 0.1: 13.36, 0.05: 15.51, 0.025: 17.53, 0.01: 20.09, 0.005: 21.96 }, | |
9: { 0.995: 1.73, 0.99: 2.09, 0.975: 2.70, 0.95: 3.33, 0.9: 4.17, 0.5: 8.34, 0.1: 14.68, 0.05: 16.92, 0.025: 19.02, 0.01: 21.67, 0.005: 23.59 }, | |
10: { 0.995: 2.16, 0.99: 2.56, 0.975: 3.25, 0.95: 3.94, 0.9: 4.87, 0.5: 9.34, 0.1: 15.99, 0.05: 18.31, 0.025: 20.48, 0.01: 23.21, 0.005: 25.19 }, | |
11: { 0.995: 2.60, 0.99: 3.05, 0.975: 3.82, 0.95: 4.57, 0.9: 5.58, 0.5: 10.34, 0.1: 17.28, 0.05: 19.68, 0.025: 21.92, 0.01: 24.72, 0.005: 26.76 }, | |
12: { 0.995: 3.07, 0.99: 3.57, 0.975: 4.40, 0.95: 5.23, 0.9: 6.30, 0.5: 11.34, 0.1: 18.55, 0.05: 21.03, 0.025: 23.34, 0.01: 26.22, 0.005: 28.30 }, | |
13: { 0.995: 3.57, 0.99: 4.11, 0.975: 5.01, 0.95: 5.89, 0.9: 7.04, 0.5: 12.34, 0.1: 19.81, 0.05: 22.36, 0.025: 24.74, 0.01: 27.69, 0.005: 29.82 }, | |
14: { 0.995: 4.07, 0.99: 4.66, 0.975: 5.63, 0.95: 6.57, 0.9: 7.79, 0.5: 13.34, 0.1: 21.06, 0.05: 23.68, 0.025: 26.12, 0.01: 29.14, 0.005: 31.32 }, | |
15: { 0.995: 4.60, 0.99: 5.23, 0.975: 6.27, 0.95: 7.26, 0.9: 8.55, 0.5: 14.34, 0.1: 22.31, 0.05: 25.00, 0.025: 27.49, 0.01: 30.58, 0.005: 32.80 }, | |
16: { 0.995: 5.14, 0.99: 5.81, 0.975: 6.91, 0.95: 7.96, 0.9: 9.31, 0.5: 15.34, 0.1: 23.54, 0.05: 26.30, 0.025: 28.85, 0.01: 32.00, 0.005: 34.27 }, | |
17: { 0.995: 5.70, 0.99: 6.41, 0.975: 7.56, 0.95: 8.67, 0.9: 10.09, 0.5: 16.34, 0.1: 24.77, 0.05: 27.59, 0.025: 30.19, 0.01: 33.41, 0.005: 35.72 }, | |
18: { 0.995: 6.26, 0.99: 7.01, 0.975: 8.23, 0.95: 9.39, 0.9: 10.87, 0.5: 17.34, 0.1: 25.99, 0.05: 28.87, 0.025: 31.53, 0.01: 34.81, 0.005: 37.16 }, | |
19: { 0.995: 6.84, 0.99: 7.63, 0.975: 8.91, 0.95: 10.12, 0.9: 11.65, 0.5: 18.34, 0.1: 27.20, 0.05: 30.14, 0.025: 32.85, 0.01: 36.19, 0.005: 38.58 }, | |
20: { 0.995: 7.43, 0.99: 8.26, 0.975: 9.59, 0.95: 10.85, 0.9: 12.44, 0.5: 19.34, 0.1: 28.41, 0.05: 31.41, 0.025: 34.17, 0.01: 37.57, 0.005: 40.00 }, | |
21: { 0.995: 8.03, 0.99: 8.90, 0.975: 10.28, 0.95: 11.59, 0.9: 13.24, 0.5: 20.34, 0.1: 29.62, 0.05: 32.67, 0.025: 35.48, 0.01: 38.93, 0.005: 41.40 }, | |
22: { 0.995: 8.64, 0.99: 9.54, 0.975: 10.98, 0.95: 12.34, 0.9: 14.04, 0.5: 21.34, 0.1: 30.81, 0.05: 33.92, 0.025: 36.78, 0.01: 40.29, 0.005: 42.80 }, | |
23: { 0.995: 9.26, 0.99: 10.20, 0.975: 11.69, 0.95: 13.09, 0.9: 14.85, 0.5: 22.34, 0.1: 32.01, 0.05: 35.17, 0.025: 38.08, 0.01: 41.64, 0.005: 44.18 }, | |
24: { 0.995: 9.89, 0.99: 10.86, 0.975: 12.40, 0.95: 13.85, 0.9: 15.66, 0.5: 23.34, 0.1: 33.20, 0.05: 36.42, 0.025: 39.36, 0.01: 42.98, 0.005: 45.56 }, | |
25: { 0.995: 10.52, 0.99: 11.52, 0.975: 13.12, 0.95: 14.61, 0.9: 16.47, 0.5: 24.34, 0.1: 34.28, 0.05: 37.65, 0.025: 40.65, 0.01: 44.31, 0.005: 46.93 }, | |
26: { 0.995: 11.16, 0.99: 12.20, 0.975: 13.84, 0.95: 15.38, 0.9: 17.29, 0.5: 25.34, 0.1: 35.56, 0.05: 38.89, 0.025: 41.92, 0.01: 45.64, 0.005: 48.29 }, | |
27: { 0.995: 11.81, 0.99: 12.88, 0.975: 14.57, 0.95: 16.15, 0.9: 18.11, 0.5: 26.34, 0.1: 36.74, 0.05: 40.11, 0.025: 43.19, 0.01: 46.96, 0.005: 49.65 }, | |
28: { 0.995: 12.46, 0.99: 13.57, 0.975: 15.31, 0.95: 16.93, 0.9: 18.94, 0.5: 27.34, 0.1: 37.92, 0.05: 41.34, 0.025: 44.46, 0.01: 48.28, 0.005: 50.99 }, | |
29: { 0.995: 13.12, 0.99: 14.26, 0.975: 16.05, 0.95: 17.71, 0.9: 19.77, 0.5: 28.34, 0.1: 39.09, 0.05: 42.56, 0.025: 45.72, 0.01: 49.59, 0.005: 52.34 }, | |
30: { 0.995: 13.79, 0.99: 14.95, 0.975: 16.79, 0.95: 18.49, 0.9: 20.60, 0.5: 29.34, 0.1: 40.26, 0.05: 43.77, 0.025: 46.98, 0.01: 50.89, 0.005: 53.67 }, | |
40: { 0.995: 20.71, 0.99: 22.16, 0.975: 24.43, 0.95: 26.51, 0.9: 29.05, 0.5: 39.34, 0.1: 51.81, 0.05: 55.76, 0.025: 59.34, 0.01: 63.69, 0.005: 66.77 }, | |
50: { 0.995: 27.99, 0.99: 29.71, 0.975: 32.36, 0.95: 34.76, 0.9: 37.69, 0.5: 49.33, 0.1: 63.17, 0.05: 67.50, 0.025: 71.42, 0.01: 76.15, 0.005: 79.49 }, | |
60: { 0.995: 35.53, 0.99: 37.48, 0.975: 40.48, 0.95: 43.19, 0.9: 46.46, 0.5: 59.33, 0.1: 74.40, 0.05: 79.08, 0.025: 83.30, 0.01: 88.38, 0.005: 91.95 }, | |
70: { 0.995: 43.28, 0.99: 45.44, 0.975: 48.76, 0.95: 51.74, 0.9: 55.33, 0.5: 69.33, 0.1: 85.53, 0.05: 90.53, 0.025: 95.02, 0.01: 100.42, 0.005: 104.22 }, | |
80: { 0.995: 51.17, 0.99: 53.54, 0.975: 57.15, 0.95: 60.39, 0.9: 64.28, 0.5: 79.33, 0.1: 96.58, 0.05: 101.88, 0.025: 106.63, 0.01: 112.33, 0.005: 116.32 }, | |
90: { 0.995: 59.20, 0.99: 61.75, 0.975: 65.65, 0.95: 69.13, 0.9: 73.29, 0.5: 89.33, 0.1: 107.57, 0.05: 113.14, 0.025: 118.14, 0.01: 124.12, 0.005: 128.30 }, | |
100: { 0.995: 67.33, 0.99: 70.06, 0.975: 74.22, 0.95: 77.93, 0.9: 82.36, 0.5: 99.33, 0.1: 118.50, 0.05: 124.34, 0.025: 129.56, 0.01: 135.81, 0.005: 140.17 } | |
}; | |
// # χ2 (Chi-Squared) Goodness-of-Fit Test | |
// | |
// The [χ2 (Chi-Squared) Goodness-of-Fit Test](http://en.wikipedia.org/wiki/Goodness_of_fit#Pearson.27s_chi-squared_test) | |
// uses a measure of goodness of fit which is the sum of differences between observed and expected outcome frequencies | |
// (that is, counts of observations), each squared and divided by the number of observations expected given the | |
// hypothesized distribution. The resulting χ2 statistic, `chi_squared`, can be compared to the chi-squared distribution | |
// to determine the goodness of fit. In order to determine the degrees of freedom of the chi-squared distribution, one | |
// takes the total number of observed frequencies and subtracts the number of estimated parameters. The test statistic | |
// follows, approximately, a chi-square distribution with (k − c) degrees of freedom where `k` is the number of non-empty | |
// cells and `c` is the number of estimated parameters for the distribution. | |
function chi_squared_goodness_of_fit(data, distribution_type, significance) { | |
// Estimate from the sample data, a weighted mean. | |
var input_mean = mean(data), | |
// Calculated value of the χ2 statistic. | |
chi_squared = 0, | |
// Degrees of freedom, calculated as (number of class intervals - | |
// number of hypothesized distribution parameters estimated - 1) | |
degrees_of_freedom, | |
// Number of hypothesized distribution parameters estimated, expected to be supplied in the distribution test. | |
// Lose one degree of freedom for estimating `lambda` from the sample data. | |
c = 1, | |
// The hypothesized distribution. | |
// Generate the hypothesized distribution. | |
hypothesized_distribution = distribution_type(input_mean), | |
observed_frequencies = [], | |
expected_frequencies = [], | |
k; | |
// Create an array holding a histogram from the sample data, of | |
// the form `{ value: numberOfOcurrences }` | |
for (var i = 0; i < data.length; i++) { | |
if (observed_frequencies[data[i]] === undefined) { | |
observed_frequencies[data[i]] = 0; | |
} | |
observed_frequencies[data[i]]++; | |
} | |
// The histogram we created might be sparse - there might be gaps | |
// between values. So we iterate through the histogram, making | |
// sure that instead of undefined, gaps have 0 values. | |
for (i = 0; i < observed_frequencies.length; i++) { | |
if (observed_frequencies[i] === undefined) { | |
observed_frequencies[i] = 0; | |
} | |
} | |
// Create an array holding a histogram of expected data given the | |
// sample size and hypothesized distribution. | |
for (k in hypothesized_distribution) { | |
if (k in observed_frequencies) { | |
expected_frequencies[k] = hypothesized_distribution[k] * data.length; | |
} | |
} | |
// Working backward through the expected frequencies, collapse classes | |
// if less than three observations are expected for a class. | |
// This transformation is applied to the observed frequencies as well. | |
for (k = expected_frequencies.length - 1; k >= 0; k--) { | |
if (expected_frequencies[k] < 3) { | |
expected_frequencies[k - 1] += expected_frequencies[k]; | |
expected_frequencies.pop(); | |
observed_frequencies[k - 1] += observed_frequencies[k]; | |
observed_frequencies.pop(); | |
} | |
} | |
// Iterate through the squared differences between observed & expected | |
// frequencies, accumulating the `chi_squared` statistic. | |
for (k = 0; k < observed_frequencies.length; k++) { | |
chi_squared += Math.pow( | |
observed_frequencies[k] - expected_frequencies[k], 2) / | |
expected_frequencies[k]; | |
} | |
// Calculate degrees of freedom for this test and look it up in the | |
// `chi_squared_distribution_table` in order to | |
// accept or reject the goodness-of-fit of the hypothesized distribution. | |
degrees_of_freedom = observed_frequencies.length - c - 1; | |
return chi_squared_distribution_table[degrees_of_freedom][significance] < chi_squared; | |
} | |
// # Mixin | |
// | |
// Mixin simple_statistics to a single Array instance if provided | |
// or the Array native object if not. This is an optional | |
// feature that lets you treat simple_statistics as a native feature | |
// of Javascript. | |
function mixin(array) { | |
var support = !!(Object.defineProperty && Object.defineProperties); | |
// Coverage testing will never test this error. | |
/* istanbul ignore next */ | |
if (!support) throw new Error('without defineProperty, simple-statistics cannot be mixed in'); | |
// only methods which work on basic arrays in a single step | |
// are supported | |
var arrayMethods = ['median', 'standard_deviation', 'sum', | |
'sample_skewness', | |
'mean', 'min', 'max', 'quantile', 'geometric_mean', | |
'harmonic_mean', 'root_mean_square']; | |
// create a closure with a method name so that a reference | |
// like `arrayMethods[i]` doesn't follow the loop increment | |
function wrap(method) { | |
return function() { | |
// cast any arguments into an array, since they're | |
// natively objects | |
var args = Array.prototype.slice.apply(arguments); | |
// make the first argument the array itself | |
args.unshift(this); | |
// return the result of the ss method | |
return ss[method].apply(ss, args); | |
}; | |
} | |
// select object to extend | |
var extending; | |
if (array) { | |
// create a shallow copy of the array so that our internal | |
// operations do not change it by reference | |
extending = array.slice(); | |
} else { | |
extending = Array.prototype; | |
} | |
// for each array function, define a function that gets | |
// the array as the first argument. | |
// We use [defineProperty](https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/defineProperty) | |
// because it allows these properties to be non-enumerable: | |
// `for (var in x)` loops will not run into problems with this | |
// implementation. | |
for (var i = 0; i < arrayMethods.length; i++) { | |
Object.defineProperty(extending, arrayMethods[i], { | |
value: wrap(arrayMethods[i]), | |
configurable: true, | |
enumerable: false, | |
writable: true | |
}); | |
} | |
return extending; | |
} | |
ss.linear_regression = linear_regression; | |
ss.standard_deviation = standard_deviation; | |
ss.r_squared = r_squared; | |
ss.median = median; | |
ss.mean = mean; | |
ss.mode = mode; | |
ss.min = min; | |
ss.max = max; | |
ss.sum = sum; | |
ss.quantile = quantile; | |
ss.quantile_sorted = quantile_sorted; | |
ss.iqr = iqr; | |
ss.mad = mad; | |
ss.chunk = chunk; | |
ss.shuffle = shuffle; | |
ss.shuffle_in_place = shuffle_in_place; | |
ss.sample = sample; | |
ss.sample_covariance = sample_covariance; | |
ss.sample_correlation = sample_correlation; | |
ss.sample_variance = sample_variance; | |
ss.sample_standard_deviation = sample_standard_deviation; | |
ss.sample_skewness = sample_skewness; | |
ss.geometric_mean = geometric_mean; | |
ss.harmonic_mean = harmonic_mean; | |
ss.root_mean_square = root_mean_square; | |
ss.variance = variance; | |
ss.t_test = t_test; | |
ss.t_test_two_sample = t_test_two_sample; | |
// jenks | |
ss.jenksMatrices = jenksMatrices; | |
ss.jenksBreaks = jenksBreaks; | |
ss.jenks = jenks; | |
ss.bayesian = bayesian; | |
ss.perceptron = perceptron; | |
// Distribution-related methods | |
ss.epsilon = epsilon; // We make ε available to the test suite. | |
ss.factorial = factorial; | |
ss.bernoulli_distribution = bernoulli_distribution; | |
ss.binomial_distribution = binomial_distribution; | |
ss.poisson_distribution = poisson_distribution; | |
ss.chi_squared_goodness_of_fit = chi_squared_goodness_of_fit; | |
// Normal distribution | |
ss.z_score = z_score; | |
ss.cumulative_std_normal_probability = cumulative_std_normal_probability; | |
ss.standard_normal_table = standard_normal_table; | |
ss.error_function = error_function; | |
ss.inverse_error_function = inverse_error_function; | |
ss.probit = probit; | |
// Alias this into its common name | |
ss.average = mean; | |
ss.interquartile_range = iqr; | |
ss.mixin = mixin; | |
ss.median_absolute_deviation = mad; | |
ss.rms = root_mean_square; | |
ss.erf = error_function; | |
return ss; | |
})); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment