Last active
May 18, 2021 12:47
-
-
Save rgstephens/a32742a1fc47373f3c0f989c3061af3c to your computer and use it in GitHub Desktop.
Rasa featurizer for Universal Sentence Encoder
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from rasa_nlu.featurizers import Featurizer | |
import tensorflow_hub as hub | |
import tensorflow as tf | |
import logging | |
logger = logging.getLogger(__name__) | |
class UniversalSentenceEncoderFeaturizer(Featurizer): | |
"""Appends a universal sentence encoding to the message's text_features.""" | |
TFHUB_URL = "https://tfhub.dev/google/universal-sentence-encoder/2" | |
name = "universal_sentence_encoder_featurizer" | |
# We don't require any previous pipline step and return text_features | |
requires = [] | |
provides = ["text_features"] | |
def __init__(self, component_config): | |
import time | |
super(UniversalSentenceEncoderFeaturizer, self).__init__(component_config) | |
logger.debug("loading sentence encoder") | |
start_time = time.time() | |
print("loading sentence encoder") | |
# Load the TensorFlow Hub Module with pre-trained weights | |
sentence_encoder = hub.Module(self.TFHUB_URL) | |
elapsed_time = time.time() - start_time | |
print("load complete: %.1f seconds, continue setup..." % (elapsed_time)) | |
start_time = time.time() | |
# Create a TensorFlow placeholder for the input string | |
self.input_string = tf.placeholder(tf.string, shape=[None]) | |
# Invoke `sentence_encoder` in order to create the encoding tensor | |
self.encoding = sentence_encoder(self.input_string) | |
# Create a TensorFlow Session and run initializers | |
self.session = tf.Session() | |
self.session.run([tf.global_variables_initializer(), | |
tf.tables_initializer()]) | |
elapsed_time = time.time() - start_time | |
print("tensorflow init complete: %.1f seconds" % (elapsed_time)) | |
def train(self, training_data, config, **kwargs): | |
# Nothing to train, just process all training examples so that the | |
# feature is set for future pipeline steps | |
for example in training_data.training_examples: | |
self.process(example) | |
def process(self, message, **kwargs): | |
# Get the sentence encoding by feeding the message text and computing | |
# the encoding tensor. | |
feature_vector = self.session.run(self.encoding, | |
{self.input_string: [message.text]})[0] | |
# Concatenate the feature vector with any existing text features | |
features = self._combine_with_existing_features(message, feature_vector) | |
# Set the feature, overwriting any existing `text_features` | |
message.set("text_features", features) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment