Created
September 12, 2016 20:11
-
-
Save rhyolight/2cb5935142a2cb8511967da17dc4ad28 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import importlib | |
import sys | |
import csv | |
import datetime | |
import pprint | |
from nupic.data import fieldmeta | |
from nupic.data.inference_shifter import InferenceShifter | |
from nupic.frameworks.opf.modelfactory import ModelFactory | |
from nupic.frameworks.opf.common_models.cluster_params import ( | |
getScalarMetricWithTimeOfDayAnomalyParams) | |
import nupic_anomaly_output | |
DESCRIPTION = ( | |
"Starts a NuPIC model from the model params returned by the swarm\n" | |
"and pushes each line of input from the gym into the model. Results\n" | |
"are written to an output file (default) or plotted dynamically if\n" | |
"the --plot option is specified.\n" | |
) | |
APPLICATION = "ddos" | |
DATA_DIR = "." | |
MODEL_PARAMS_DIR = "./model_params" | |
# '7/2/10 0:00' | |
DATE_FORMAT = "%m/%d/%y %H:%M" | |
def createModel(params): | |
""" | |
Given a model params dictionary, create a CLA Model. Automatically enables | |
inference for kw_energy_consumption. | |
:param modelParams: Model params dict | |
:return: OPF Model object | |
""" | |
pprint.pprint (params) | |
model = ModelFactory.create(modelConfig=params["modelConfig"]) | |
model.enableLearning() | |
model.enableInference(params["inferenceArgs"]) | |
return model | |
def runIoThroughNupic(inputData, model, app, plot): | |
""" | |
Handles looping over the input data and passing each row into the given model | |
object, as well as extracting the result object and passing it into an output | |
handler. | |
:param inputData: file path to input data CSV | |
:param model: OPF Model object | |
:param gymName: Gym name, used for output handler naming | |
:param plot: Whether to use matplotlib or not. If false, uses file output. | |
""" | |
inputFile = open(inputData, "rb") | |
csvReader = csv.reader(inputFile) | |
# skip header rows | |
csvReader.next() | |
csvReader.next() | |
csvReader.next() | |
shifter = InferenceShifter() | |
if plot: | |
output = nupic_anomaly_output.NuPICPlotOutput(app) | |
else: | |
output = nupic_anomaly_output.NuPICFileOutput(app) | |
counter = 0 | |
for row in csvReader: | |
counter += 1 | |
if (counter % 100 == 0): | |
print "Read %i lines..." % counter | |
#timestamp = datetime.datetime.strptime(row[0], DATE_FORMAT) | |
#consumption = float(row[1]) | |
packets = int(row[8]) | |
bytes = int(row[9]) | |
duration = float(row[10]) | |
result = model.run({ | |
"packets": packets, | |
"bytes": bytes, | |
"duration": duration | |
}) | |
if plot: | |
result = shifter.shift(result) | |
#print result | |
#prediction = result.inferences["multiStepBestPredictions"][1] | |
anomalyScore = result.inferences["anomalyScore"] | |
output.write(packets, bytes,duration, anomalyScore) | |
#output.write(duration,packets,0, anomalyScore) | |
inputFile.close() | |
output.close() | |
def getModelParamsFromName(app): | |
""" | |
Given a app name, assumes a matching model params python module exists within | |
the model_params directory and attempts to import it. | |
:param gymName: Gym name, used to guess the model params module name. | |
:return: OPF Model params dictionary | |
""" | |
importName = "model_params.%s_model_params" % ( | |
app.replace(" ", "_").replace("-", "_") | |
) | |
print "Importing model params from %s" % importName | |
try: | |
importedModelParams = importlib.import_module(importName).MODEL_PARAMS | |
except ImportError: | |
raise Exception("No model params exist for '%s'. Run swarm first!" | |
% app) | |
return importedModelParams | |
def runModel(app, plot=False): | |
""" | |
Assumes the gynName corresponds to both a like-named model_params file in the | |
model_params directory, and that the data exists in a like-named CSV file in | |
the current directory. | |
:param gymName: Important for finding model params and input CSV file | |
:param plot: Plot in matplotlib? Don't use this unless matplotlib is | |
installed. | |
""" | |
print "Creating model from %s..." % app | |
model = createModel(getModelParamsFromName(app)) | |
#model = createModel() | |
# inputData = "%s/%s.csv" % (DATA_DIR, app.replace(" ", "_")) | |
inputData="./3.csv" | |
runIoThroughNupic(inputData, model, app, plot) | |
if __name__ == "__main__": | |
print DESCRIPTION | |
plot = False | |
args = sys.argv[1:] | |
if "--plot" in args: | |
plot = True | |
runModel(APPLICATION, plot=plot) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment