Created
September 20, 2024 01:25
-
-
Save riaf/7d947a8081c7c6179f55de3d2c4d0f43 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
csv_file = '00_zenkoku_all_20240830.csv' | |
df = pd.read_csv(csv_file, header=None, encoding='utf-8', low_memory=False) | |
df.columns = [ | |
'sequence_number', 'corporate_number', 'process', 'correct', 'update_date', | |
'change_date', 'name', 'name_image_id', 'kind', 'prefecture_name', 'city_name', | |
'street_number', 'prefecture_code', 'city_code', 'postcode', 'address_outside', | |
'address_outside_image_id', 'close_date', 'close_cause', 'successor_corporate_number', | |
'change_cause', 'extra_column', 'assignment_date', 'latest', 'name_en', 'prefecture_name_en', 'city_name_en', | |
'address_outside_en', 'furigana', 'hihyoji' | |
] | |
new_establishments = df[df['process'] == 1] | |
new_establishments['assignment_date'] = pd.to_datetime(new_establishments['assignment_date'], errors='coerce') | |
def calculate_fiscal_year(date): | |
if pd.isnull(date): | |
return None | |
if date.month >= 4: | |
return date.year | |
else: | |
return date.year - 1 | |
new_establishments['fiscal_year'] = new_establishments['assignment_date'].apply(calculate_fiscal_year) | |
new_establishments = new_establishments.dropna(subset=['fiscal_year']) | |
result = new_establishments.groupby(['city_name', 'fiscal_year']).size().reset_index(name='count') | |
print(result) | |
result.to_csv('new_establishments_by_city_fiscal_year.csv', index=False, encoding='utf-8') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment