Last active
May 26, 2025 17:13
-
-
Save ricardoV94/9473a0ff3bb57adb7f53f9edad32ae7b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pymc as pm | |
import pytensor.tensor as pt | |
import pytensor.xtensor as px | |
N = 100 | |
seed = sum(map(ord, "xarray>=numpy?")) | |
rng = np.random.default_rng(seed) | |
x_np = np.linspace(0, 10, N) | |
y_np = np.piecewise( | |
x_np, | |
[x_np <= 3, (x_np > 3) & (x_np <= 7), x_np > 7], | |
[lambda x: 0.5 * x, lambda x: 1.5 + 0.2 * (x - 3), lambda x: 2.3 - 0.1 * (x - 7)], | |
) | |
y_np += rng.normal(0, 0.2, size=N) | |
group_idx = rng.choice(3, size=N) | |
N_knots = 13 | |
knots_np = np.linspace(0, 10, num=N_knots) | |
coords = { | |
"group": range(3), | |
"knots": range(N_knots), | |
"obs": range(N), | |
} | |
with pm.Model(coords=coords) as model: | |
x = pm.Data("x", x_np, dims="obs") | |
knots = pm.Data("knots", knots_np, dims="knot") | |
sigma = pm.HalfCauchy("sigma", beta=1) | |
sigma_beta0 = pm.HalfNormal("sigma_beta0", sigma=10) | |
beta0 = pm.HalfNormal("beta_0", sigma=sigma_beta0, dims="group") | |
z = pm.Normal(f"z", dims=("group", "knot")) | |
delta_factors = pt.special.softmax(z, axis=-1) # (groups, knot) | |
slope_factors = 1 - pt.cumsum(delta_factors[:, :-1], axis=-1) # (groups, knot-1) | |
spline_slopes = pt.join(-1, beta0[:, None], beta0[:, None] * slope_factors) # (groups, knot-1) | |
beta = pt.join(-1, beta0[:, None], pt.diff(spline_slopes, axis=-1)) # (groups, knot) | |
beta = pm.Deterministic("beta", beta, dims=("group", "knot")) | |
X = pt.maximum(0, x[:, None] - knots[None, :]) # (n, knot) | |
mu = (X * beta[group_idx]).sum(-1) # ((n, knots) * (n, knots)).sum(-1) = (n,) | |
y = pm.Normal("y", mu=mu, sigma=sigma, observed=y_np, dims="obs") | |
class XModel(pm.Model): | |
def register_rv(self, rv, *args, dims=None, **kwargs): | |
rv = super().register_rv(rv, *args, dims=dims, **kwargs) | |
if dims is not None: | |
rv = px.as_xtensor(rv, dims=dims) | |
return rv | |
def add_named_variable(self, var, dims=None): | |
if isinstance(var.type, px.type.XTensorType): | |
if dims is None: | |
dims = var.dims | |
else: | |
if dims != var.dims: | |
raise ValueError( | |
f"Provided dims {dims} do not match variable pre-existing {var.dims}. " | |
"Use rename and/or transpose to match new dims" | |
) | |
super().add_named_variable(var, dims) | |
def XData(name, x, *args, **kwargs): | |
x = pm.Data(name, x, *args, **kwargs) | |
model = pm.modelcontext(None) | |
if (dims := model.named_vars_to_dims.get(x.name, None)) is not None: | |
x = px.as_xtensor(x, dims=dims) | |
return x | |
with XModel(coords=coords) as xmodel: | |
x = XData("x", x_np, dims="obs") | |
knots = XData("knots", knots_np, dims="knot") | |
sigma = pm.HalfCauchy("sigma", beta=1) | |
sigma_beta0 = pm.HalfNormal("sigma_beta0", sigma=10) | |
beta0 = pm.HalfNormal("beta_0", sigma=sigma_beta0, dims="group") | |
z = pm.Normal(f"z", dims=("group", "knot")) | |
delta_factors = px.special.softmax(z, dim="knot") | |
slope_factors = 1 - delta_factors.isel(knot=np.s_[:-1]).cumsum("knot") | |
spline_slopes = px.concat([beta0, beta0 * slope_factors], dim="knot") | |
beta = px.concat([beta0, spline_slopes.diff("knot")], dim="knot") | |
beta = pm.Deterministic("beta", beta, dims=("group", "knot")) | |
X = px.math.scalar_maximum(0, x - knots) | |
mu = (X * beta.isel(group=group_idx).rename(group="obs")).sum("knot") | |
y_obs = pm.Normal("y_obs", mu=mu.values, sigma=sigma, observed=y_np, dims="obs") | |
print(f"{model.compile_logp()(model.initial_point()):,}") | |
print(f"{xmodel.compile_logp()(xmodel.initial_point()):,}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment