-
-
Save ricardoV94/aabdb4756a2126864a8e0a36fca54e8a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pylab import * | |
from scipy.stats import uniform, binom, expon, beta | |
true_gamma = 0.5 | |
N = 600 | |
T = 15 | |
data = zeros((2, N), dtype=float) | |
event_times = data[0,:] | |
event_times[:] = uniform(0,15).rvs(N) | |
delay=5 | |
lag_dist = expon(scale=delay) | |
def r(t): | |
return lag_dist.cdf(t) | |
num_success = binom(N, true_gamma).rvs() | |
data[1,0:num_success] = data[0,0:num_success] + lag_dist.rvs(num_success) | |
success_obs_times = data[1,0:num_success] | |
data[:, 0:num_success] = data[:, success_obs_times.argsort()] | |
M = sum(data[1, 0:num_success] < T) | |
observation_times = data[1, 0:M] #Observations occurring before T | |
assert(M <= N) | |
def f(gamma): | |
log_likelihood = M*log(gamma) | |
x = np.outer(r(T-event_times[M:N]), gamma) | |
log_likelihood += sum(log(1-x), axis=0) | |
return exp(log_likelihood) | |
gamma = arange(0,1, 1.0/1024) + 0.5/1024 | |
posterior = f(gamma) | |
posterior /= sum(posterior) | |
title("Posterior distributions, comparing laggy to beta distribution") | |
plot(gamma, posterior, label="Laggy distribution") | |
plot(gamma, beta(M+1, N-M+1).pdf(gamma)/1024, label="Beta distribution") | |
xticks([0, true_gamma, 1], ["0", "$\gamma="+str(true_gamma) + "$", "1"]) | |
yticks([]) | |
xlabel("$\gamma$") | |
ylabel("probability density") | |
print "N="+str(N) | |
print "M="+str(M) | |
print "Delay = " + str(delay) | |
legend() | |
show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment