git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
# Assuming an Ubuntu Docker image | |
$ docker run -it <image> /bin/bash |
import numpy as np | |
from keras.models import Sequential | |
from keras.layers.core import Activation, Dense | |
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32") | |
target_data = np.array([[0],[1],[1],[0]], "float32") | |
model = Sequential() | |
model.add(Dense(32, input_dim=2, activation='relu')) | |
model.add(Dense(1, activation='sigmoid')) |
#!/bin/bash | |
# install CUDA Toolkit v8.0 | |
# instructions from https://developer.nvidia.com/cuda-downloads (linux -> x86_64 -> Ubuntu -> 16.04 -> deb (network)) | |
CUDA_REPO_PKG="cuda-repo-ubuntu1604_8.0.61-1_amd64.deb" | |
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/${CUDA_REPO_PKG} | |
sudo dpkg -i ${CUDA_REPO_PKG} | |
sudo apt-get update | |
sudo apt-get -y install cuda |
def ransac_polyfit(x, y, order=3, n=20, k=100, t=0.1, d=100, f=0.8): | |
# Thanks https://en.wikipedia.org/wiki/Random_sample_consensus | |
# n – minimum number of data points required to fit the model | |
# k – maximum number of iterations allowed in the algorithm | |
# t – threshold value to determine when a data point fits a model | |
# d – number of close data points required to assert that a model fits well to data | |
# f – fraction of close data points required | |
besterr = np.inf |
The PATH
is an important concept when working on the command line. It's a list
of directories that tell your operating system where to look for programs, so
that you can just write script
instead of /home/me/bin/script
or
C:\Users\Me\bin\script
. But different operating systems have different ways to
add a new directory to it:
def seed_everything(seed: int): | |
import random, os | |
import numpy as np | |
import torch | |
random.seed(seed) | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) |
# Add the following records to your DNS config | |
## Mac: /etc/hosts | |
## Windows: C:\Windows\System32\drivers\etc\hosts | |
104.18.23.110 admin-stg.notion.so | |
104.18.23.110 aif.notion.so | |
104.18.23.110 analytics-iframe.notion.so | |
104.18.23.110 analytics.pgncs.notion.so | |
104.18.23.110 api.notion.so | |
104.18.23.110 api.pgncs.notion.so | |
104.18.23.110 dev.notion.so |