Skip to content

Instantly share code, notes, and snippets.

@richardliaw
Last active March 8, 2021 08:33
Show Gist options
  • Save richardliaw/8a3b1e675289ed49743ad2ce7113e5f1 to your computer and use it in GitHub Desktop.
Save richardliaw/8a3b1e675289ed49743ad2ce7113e5f1 to your computer and use it in GitHub Desktop.
import torch
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
import torchvision.transforms as transforms
import ray
from ray.util.sgd.torch import TorchTrainer
from ray.util.sgd.torch import TrainingOperator
# https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
from ray.util.sgd.torch.resnet import ResNet18
def cifar_creator(config):
"""Returns dataloaders to be used in `train` and `validate`."""
tfms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
]) # meanstd transformation
train_loader = DataLoader(
CIFAR10(root="~/data", download=True, transform=tfms), batch_size=config["batch"])
validation_loader = DataLoader(
CIFAR10(root="~/data", download=True, transform=tfms), batch_size=config["batch"])
return train_loader, validation_loader
def optimizer_creator(model, config):
"""Returns an optimizer (or multiple)"""
return torch.optim.SGD(model.parameters(), lr=config["lr"])
CustomTrainingOperator = TrainingOperator.from_creators(
model_creator=ResNet18, # A function that returns a nn.Module
optimizer_creator=optimizer_creator, # A function that returns an optimizer
data_creator=cifar_creator, # A function that returns dataloaders
loss_creator=torch.nn.CrossEntropyLoss # A loss function
)
ray.init()
trainer = TorchTrainer(
training_operator_cls=CustomTrainingOperator,
config={"lr": 0.01, # used in optimizer_creator
"batch": 64 # used in data_creator
},
num_workers=2, # amount of parallelism
use_gpu=torch.cuda.is_available(),
use_tqdm=True)
stats = trainer.train()
print(trainer.validate())
torch.save(trainer.state_dict(), "checkpoint.pt")
trainer.shutdown()
print("success!")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment