-
-
Save richardrl/ae52e344b20ddc60cd2c6bb94859231a to your computer and use it in GitHub Desktop.
Pytorch trick : occupy all GPU memory in advance
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import torch | |
from tqdm import tqdm | |
import time | |
# declare which gpu device to use | |
cuda_device = '0' | |
def check_mem(cuda_device): | |
devices_info = os.popen('"/usr/bin/nvidia-smi" --query-gpu=memory.total,memory.used --format=csv,nounits,noheader').read().strip().split("\n") | |
total, used = devices_info[int(cuda_device)].split(',') | |
return total,used | |
def occumpy_mem(cuda_device): | |
total, used = check_mem(cuda_device) | |
total = int(total) | |
used = int(used) | |
max_mem = int(total * 0.9) | |
block_mem = max_mem - used | |
x = torch.cuda.FloatTensor(256,1024,block_mem) | |
del x | |
if __name__ == '__main__': | |
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_device | |
occumpy_mem(cuda_device) | |
for _ in tqdm(range(60)): | |
time.sleep(1) | |
print('Done') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment