Created
November 27, 2019 13:52
-
-
Save riga/439f6905857ee95c794e307ec9c9828e to your computer and use it in GitHub Desktop.
Patch a TensorFlow graph
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
import os | |
import tensorflow as tf | |
def read_constant_graph(graph_path, create_session=True, as_text=False): | |
graph = tf.Graph() | |
with graph.as_default(): | |
graph_def = tf.GraphDef() | |
if as_text: | |
from google.protobuf import text_format | |
with open(graph_path, "r") as f: | |
text_format.Merge(f.read(), graph_def) | |
else: | |
from tensorflow.python.platform import gfile | |
with gfile.FastGFile(graph_path, "rb") as f: | |
graph_def.ParseFromString(f.read()) | |
tf.import_graph_def(graph_def, name="") | |
if create_session: | |
session = tf.Session(graph=graph) | |
return graph, session | |
else: | |
return graph | |
def write_constant_graph(session, output_names, graph_path, **kwargs): | |
kwargs.setdefault("as_text", False) | |
constant_graph = tf.graph_util.convert_variables_to_constants(session, | |
session.graph.as_graph_def(), output_names) | |
graph_path = os.path.normpath(os.path.abspath(graph_path)) | |
graph_dir, graph_name = os.path.split(graph_path) | |
if not os.path.exists(graph_dir): | |
os.makedirs(graph_dir) | |
if os.path.exists(graph_path): | |
os.remove(graph_path) | |
tf.train.write_graph(constant_graph, graph_dir, graph_name, **kwargs) | |
graph, sess = read_constant_graph("padding10_fullModel.pb") | |
id_op = graph.get_operation_by_name("pid_output/Softmax") | |
er_op = graph.get_operation_by_name("enreg_output/BiasAdd") | |
with tf.variable_scope("patch"): | |
e_mean = 213.90352475881576 | |
e_std = 108.05413626100672 | |
e_rescaled = er_op.outputs[0] * e_std + e_mean | |
id_t = id_op.outputs[0] | |
id_ph_el_mu = id_t[:, 0:3] | |
id_pi0 = id_t[:, 0:1] * 0. | |
id_ch = id_t[:, 3:4] | |
id_nh_am_un = id_t[:, 0:3] * 0. | |
id_concat = tf.concat([id_ph_el_mu, id_pi0, id_ch, id_nh_am_un], axis=1) | |
tf.identity(e_rescaled, name="output/regressed_energy") | |
tf.identity(id_concat, name="output/id_probabilities") | |
write_constant_graph(sess, ["output/id_probabilities", "output/regressed_energy"], "patched.pb") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment