http://hadwiger.html.xdomain.jp/
ใฐใฉใ็่ซใฎๆฌใ่ชญใใงใใใใใHajรณs ใฎๆงๆใใชใใใฎใ่ฆใคใใพใใใ
https://sites.math.washington.edu/~billey/classes/562.winter.2018/articles/GraphTheory.pdf
| Lemma col: forall P Q:nat->Prop, (forall x:nat,P x -> False) -> (forall x:nat, (forall z:nat, (P z->Q z)) -> P x) -> forall x:nat, P x . | |
| Proof. | |
| intros. | |
| apply (H0 x). | |
| intros. | |
| apply (H z) in H1. | |
| tauto. | |
| Qed. | 
| -- | |
| -- River | |
| -- | |
| -- $ egison 4.1.3 | |
| -- > loadFile "river.egi" | |
| -- | |
| -- Data | |
| -- | 
| # $ iex -S mix | |
| # > Bf.hello |> Bf.parse([]) |> Bf.run() | |
| defmodule Bf do | |
| # data | |
| # Module.register_attribute(__MODULE__, :hello, persist: true) | |
| # @hello "++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++." | |
| def hello do | |
| '++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.' | |
| end | 
| -- | |
| -- 5-color | |
| -- | |
| -- Egison Jornal Vol.2 ใEgison ใใฟใผใณใใใใซใใใฐใฉใใฎๅฝฉ่ฒใใ new syntax ใงๆธใใใใฎ | |
| -- | |
| -- $ egison 4.1.3 | |
| -- > loadFile "5color.egi" | |
| -- | 
| -- $ idris | |
| -- > :l Halt | |
| module Halt | |
| %default total | |
| namespace Hal | |
| postulate H : (f : a) -> Bool | 
| -- ๅ่่จไบ๏ผhttps://qiita.com/41semicolon/items/530c0e5e4785728f7295 | |
| -- | |
| -- $ idris | |
| -- > :l GoedelPuzzle | |
| module GoedelPuzzle | |
| %default total | |
| %hide (++) | |
| theory Test03 | |
| imports Main HOL.Nat HOL.Wellfounded | |
| begin | |
| (* | |
| lemma hoge220802 [simp]: | |
| fixes F :: "nat โ bool" | |
| and n :: nat | |
| assumes a: "F n" | |
| (* and b: "A โ F" *) | 
| % Welcome to SWI-Prolog (threaded, 64 bits, version 8.3.28) | |
| % ๅ่: https://qiita.com/sym_num/items/955f47de4494f4c57ba8 | |
| % ๅฎ่ก: | |
| % > prolog | |
| % ?- ['./prolog_lisp.pl']. | |
| % ?- repl. | |
| % :- use_module(library(history)). | |
| %Lisp in Prolog | 
http://hadwiger.html.xdomain.jp/
ใฐใฉใ็่ซใฎๆฌใ่ชญใใงใใใใใHajรณs ใฎๆงๆใใชใใใฎใ่ฆใคใใพใใใ
https://sites.math.washington.edu/~billey/classes/562.winter.2018/articles/GraphTheory.pdf
| -- :l Esty | |
| module Esty | |
| %default total | |
| %hide fib | |
| %hide fact | |
| syntax "sif(" [t] "," [e] ")." [bool] = ifThenElse bool t e | |
| namespace Fun |