Created
July 16, 2014 16:05
-
-
Save rigibun/55c6476ffd4b90d7e8e9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Lemma Coq_01 : forall A B C:Prop, (A->B->C) -> (A->B) -> A -> C. | |
Proof. | |
intros. | |
apply H. | |
apply H1. | |
apply H0. | |
apply H1. | |
Qed. | |
Lemma Coq_02 : forall A B C:Prop, A /\ (B /\ C) -> (A /\ B) /\ C. | |
Proof. | |
intros. | |
destruct H. | |
destruct H0. | |
split. | |
split. | |
auto. | |
auto. | |
auto. | |
Qed. | |
Lemma Coq_03 : forall A B C D:Prop, (A -> C) /\ (B -> D) /\ A /\ B -> C /\ D. | |
Proof. | |
intros. | |
destruct H. | |
destruct H0. | |
destruct H1. | |
split. | |
auto. | |
auto. | |
Qed. | |
Lemma Coq_04 : forall A : Prop, ~(A /\ ~A). | |
Proof. | |
unfold not. | |
intros. | |
destruct H. | |
apply H0. | |
apply H. | |
Qed. | |
Lemma Coq_05 : forall A B C:Prop, A \/ (B \/ C) -> (A \/ B) \/ C. | |
Proof. | |
intros. | |
destruct H. | |
left. | |
left. | |
exact H. | |
destruct H. | |
left. | |
right. | |
exact H. | |
right. | |
exact H. | |
Qed. | |
Lemma Coq_06 : forall A, ~~~A -> ~A. | |
Proof. | |
intros. | |
unfold not. | |
unfold not in H. | |
intros. | |
apply H. | |
intros. | |
apply H1. | |
exact H0. | |
Qed. | |
Lemma Coq_07 : forall A B:Prop, (A->B)->~B->~A. | |
Proof. | |
unfold not. | |
intros. | |
apply H0. | |
apply H. | |
apply H1. | |
Qed. | |
Lemma Coq_08: forall A B:Prop, ((((A->B)->A)->A)->B)->B. | |
Proof. | |
intros. | |
apply H. | |
intros. | |
apply H0. | |
intros. | |
apply H. | |
intros. | |
exact H1. | |
Qed. | |
Lemma Coq_09 : forall A:Prop, ~~(A\/~A). | |
Proof. | |
unfold not. | |
intros. | |
apply H. | |
right. | |
intros. | |
apply H. | |
left. | |
exact H0. | |
Qed. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment