Last active
May 18, 2016 06:15
-
-
Save rigibun/a9907bbe63bcfac51a6ca71311cea3bb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import chainer | |
from chainer import cuda, Function, gradient_check, Variable, optimizers, serializers, utils | |
from chainer import Link, Chain, ChainList | |
import chainer.functions as F | |
import chainer.links as L | |
from sklearn.datasets import fetch_mldata | |
mnist = fetch_mldata('MNIST original', data_home='../') | |
x_train = mnist.data[:60000] | |
y_train = mnist.target[:60000] | |
x_test = mnist.data[60000:] | |
y_test = mnist.target[60000:] | |
l2_unit = 1000 | |
class MyChain(Chain): | |
def __init__(self): | |
super(MyChain, self).__init__( | |
l1 = L.Linear(784, l2_unit), | |
l2 = L.Linear(l2_unit, l2_unit), | |
l3 = L.Linear(l2_unit, 10) | |
) | |
def __call__(self, x): | |
h1 = F.relu(self.l1(x)) | |
h2 = F.relu(self.l2(h1)) | |
return self.l3(h2) | |
model = L.Classifier(MyChain()) | |
optimizer = optimizers.Adam() | |
optimizer.setup(model) | |
train_size = 60000 | |
test_size = 10000 | |
batchsize = 1000 | |
for epoch in range(1, 11): | |
print('epoch:', epoch) | |
indexes = np.random.permutation(train_size) | |
sum_loss = 0 | |
sum_accuracy = 0 | |
sum_len = 0 | |
for i in range(0, train_size, batchsize): | |
x = Variable(np.array(x_train[indexes[i : i + batchsize]], dtype=np.float32)) | |
t = Variable(np.array(y_train[indexes[i : i + batchsize]], dtype=np.int32)) | |
optimizer.update(model, x, t) | |
sum_loss += float(model.loss.data) * len(t.data) | |
sum_accuracy += float(model.accuracy.data) * len(t.data) | |
print('loss =', sum_loss / train_size) | |
print('accuracy =', sum_accuracy / train_size) | |
indexes = np.random.permutation(test_size) | |
sum_loss = 0 | |
sum_accuracy = 0 | |
sum_len = 0 | |
for i in range(0, test_size, batchsize): | |
x = Variable(np.array(x_test[indexes[i : i + batchsize]], dtype=np.float32)) | |
t = Variable(np.array(y_test[indexes[i : i + batchsize]], dtype=np.int32)) | |
sum_loss += float(model(x, t).data) * len(t.data) | |
sum_accuracy += float(model.accuracy.data) * len(t.data) | |
sum_len += len(t.data) | |
print('test loss =', sum_loss / test_size) | |
print('test accuracy =', sum_accuracy / test_size) | |
assert(sum_len == test_size) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment