Created
October 14, 2021 18:55
-
-
Save rigogsilva/23f1dc49d050f05f510287a0c0b7f0e7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# cd.display.markdown("## Polynomial Regression") | |
# y = transformed_shifts['deletedEmployeeCount'] | |
# x = transformed_shifts['deletedEmployeeCount'] | |
# model = np.poly1d(np.polyfit(x, y, 20)) | |
# line = np.linspace( | |
# transformed_shifts['deletedEmployeeCount'].min(), | |
# transformed_shifts['deletedEmployeeCount'].max(), | |
# 200 | |
# ) | |
# plt.scatter(x, y, color='grey') | |
# plt.plot(line, model(line)) | |
# # plt.show() | |
# cd.display.pyplot() | |
# | |
import numpy as np | |
import pandas as pd | |
import plotly.graph_objects as go | |
import statsmodels.formula.api as sm | |
def predict_using_ols_result_coefficients(x: pd.Series) -> pd.Series: | |
"""Returns the y predicted for equation y = a + b1x + b2*x""" | |
# result = (13.6890 + -0.1334*x + 0.0006*x + 0.4685*x) | |
result = (1.1294 + -0.6105*x + 0.0714*x) | |
return result | |
def gen_curvilinear_x_and_y(): | |
"""""" | |
rng = np.random.RandomState(1) | |
raw_x = 8 * rng.rand(50) | |
y = np.sin(raw_x) + 0.1 * rng.randn(50) | |
inds = raw_x.ravel().argsort() # Sort x values and get index | |
raw_x = raw_x.ravel()[inds] | |
y = y[inds] # Sort y according to x sorted index | |
return raw_x, y | |
x, y = gen_curvilinear_x_and_y() | |
df = pd.DataFrame({'x': x, 'y': y}) | |
ols_model = sm.ols( | |
formula=f'y ~ x + np.power(x, 3)', | |
data=df | |
).fit() | |
print(ols_model.params) | |
print(ols_model.summary()) | |
fig = go.Figure() | |
fig.add_trace( | |
go.Scatter(x=x, y=y, mode='markers') | |
) | |
line = np.linspace( | |
df['x'].values[0], | |
df['x'].values[-1], | |
200 | |
) | |
fake_df = pd.DataFrame() | |
fake_df['x'] = line | |
fig.add_trace( | |
go.Scatter(x=line, y=ols_model.predict(fake_df), mode='lines') | |
) | |
fig.show() | |
import plotly.graph_objects as go | |
model = np.poly1d(np.polyfit(x, y, 3)) | |
line = np.linspace( | |
df['x'].values[0], | |
df['x'].values[-1], | |
50 | |
) | |
# plt.scatter(x, y, color='grey') | |
# plt.plot(line, model(line)) | |
# plt.show() | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=x, y=y, mode='markers', name='Data', marker={'color': 'grey'}, showlegend=True)) | |
y_fit = model(line) | |
fig.add_trace(go.Scatter(x=line, y=y_fit, mode='lines', name='Fit', marker={'color': 'blue'})) | |
fig.update_layout({ | |
'xaxis': {'showgrid': False, 'title': 'x'}, | |
'yaxis': {'showgrid': False, 'title': 'y'}, | |
'paper_bgcolor': 'white', | |
'plot_bgcolor': 'white' | |
}) | |
# fig.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment