Created
July 31, 2014 09:28
-
-
Save rikusalminen/6d6bb834d48b9664b38d to your computer and use it in GitHub Desktop.
Solving the rocket equation in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def numerical(): | |
from scipy.integrate import odeint | |
from numpy import array | |
# [position, mass, velocity, mass flow] | |
def acceleration(y, t, v_exhaust=1.0): | |
return array([y[2], y[3], v_exhaust * y[3]/y[1], 0.0]) | |
initial_state = array([0.0, 2.0, 0.0, -1.0]) | |
solution = odeint(acceleration, initial_state, [i/10.0 for i in range(11)], args=(1.0,)) | |
print solution | |
def symbolic(): | |
from sympy import symbols, integrate | |
m, n, t, v_exhaust = symbols('m n t v_exhaust') | |
acceleration = -v_exhaust * n / (m - n*t) | |
velocity = integrate(acceleration, (t, 0, t)) | |
position = integrate(velocity, (t, 0, t)) | |
params = {m: 2.0, n: 1.0, v_exhaust: 1.0} | |
v = velocity.subs(params) | |
p = position.subs(params) | |
solution = [(p.subs({t: i/10.0}).evalf(), v.subs({t: i/10.0}).evalf()) for i in range(11)] | |
print '\n'.join(map(str, solution)) | |
def analytical(): | |
from math import log | |
v_exhaust = 1.0 | |
m = 2.0 | |
n = 1.0 | |
def velocity(t): | |
return v_exhaust * log((m - n*t) / m) | |
def position(t): | |
return -(v_exhaust / n) * ((m-n*t) * log((m-n*t) / m) + n*t) | |
solution = ((position(i/10.0), velocity(i/10.0)) for i in range(11)) | |
print '\n'.join(map(str, solution)) | |
numerical() | |
symbolic() | |
analytical() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment