Skip to content

Instantly share code, notes, and snippets.

@rikusalminen
Last active April 21, 2022 19:43
Show Gist options
  • Save rikusalminen/87a9c47f93ff2ebfea0b to your computer and use it in GitHub Desktop.
Save rikusalminen/87a9c47f93ff2ebfea0b to your computer and use it in GitHub Desktop.
Celestial mechanics cheat sheet
% vim:nolist lbr tw=78 expandtab
\documentclass[a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[landscape,top=1cm,bottom=1cm,left=1cm,right=1cm]{geometry}
\usepackage[tiny]{titlesec} % smaller titles
\usepackage{multicol}
\usepackage{amsmath}
\pagestyle{empty}
\setcounter{secnumdepth}{0}
\title{Celestial mechanics cheatsheet}
\author{Riku Salminen}
\date{\today}
\begin{document}
\begin{multicols}{4}
\section{Laws of planetary motion}
\begin{itemize}
\item Orbit path is a conic section
\item Mechanical energy is conserved
\item Angular momentum is conserved
\begin{itemize}
\item Orbital motion in a plane fixed in inertial space
\item Constant area velocity
\end{itemize}
\end{itemize}
\section{Law of universal gravitation}
\[
\vec{F} = - \frac{G m_0 m_1}{r^3} \vec{r}
\]
% $\mu = G \left( m_0 + m_1 \right)$
\section{Symbols and quantities}
\begin{description}
\item[$\mu$] Gravity parameter
\item[$\epsilon$] Specific orbital energy
\item[$h$] Specific relative angular momentum
\item[$e$] Eccentricity
\item[$p$] Semi-latus rectum
\item[$a$] Semi-major axis
\item[$b$] Semi-minor axis
\item[$c$] Focal distance
\item[$q$] Pericenter distance
\item[$f$] True anomaly
\item[$E$] Eccentric anomaly
\item[$F$] Hyperbolic anomaly
\item[$D$] Parabolic anomaly
\item[$M$] Mean anomaly
\item[$n$] Mean motion
\item[$s$] Universal variable
\item[$\alpha$] Inverse semi-major axis
\item[$r$] Radius
\item[$v$] Velocity
\item[$\phi$] Flight path angle
\end{description}
\section{Conic sections}
radius and true anomaly
\[
r = \frac{p}{1 + e \cos f}
\]
focus-directrix property
focal-radii property
\begin{align*}
M &= E - e \sin E \\
&= e \sinh F - F
\end{align*}
\subsection{Eccentric anomaly}
\[
M =
\left\{
\begin{array}{ll}
E - e \sin E
& \quad e < 1 \\
e \sinh F - F
& \quad e > 1 \\
\frac{1}{6} D^3 + \frac{1}{2} D
& \quad e = 1 > 0
\end{array}
\right.
\]
eccentric anomaly
hyperbolic anomaly
parabolic anomaly
\subsection{Subsection}
And a few subsections
lorem ipsum
\columnbreak
\section{f \& g functions}
\begin{align*}
\vec{r} &= f\vec{r_0} + g\vec{v_0} \\
\vec{v} &= \dot{f}\vec{r_0} + \dot{g}\vec{v_0}
\end{align*}
\begin{equation*}
f \dot{g} - \dot{f} g = 1
\end{equation*}
\begin{align*}
h &= x_0 \dot{y_0} - y_0 \dot{x_0} \\
f &= \frac{x_1 \dot{y_0} - \dot{x_0} y_1}{h} \\
g &= \frac{x_0 y_1 - x_1 y_0}{h} \\
\dot{f} &= \frac{\dot{x_1} \dot{y_0} - \dot{x_0} \dot{y_1}}{h} \\
\dot{g} &= \frac{x_0 \dot{y_1} - \dot{x_1} y_0}{h}
\end{align*}
\section{f \& g power series}
\section{Universal variables}
\[
\alpha = \frac{\mu}{a} = \frac{2 \mu}{r} - v^2 = -2 \epsilon
\]
$ dt = r ds $
\begin{align*}
t &= r_0 s c_1 + r_0 \dot{r_0} s^2 c_2 + \mu s^3 c_3 \\
r &= r_0 c_0 + r_0 \dot{r_0} c_1 + \mu s^2 c_2
\end{align*}
\columnbreak
\section{Stumpff functions}
\[
c_0 =
\left\{
\begin{array}{ll}
1
& \quad z = 0 \\
\cosh \sqrt{-z}
& \quad z < 0 \\
\cos \sqrt{z}
& \quad z > 0
\end{array}
\right.
\]
\[
c_1 =
\left\{
\begin{array}{ll}
1
& \quad z = 0 \\
\frac{\sinh \sqrt{-z}}{\sqrt{-z}}
& \quad z < 0 \\
\frac{\sin \sqrt{z}}{\sqrt{z}}
& \quad z > 0
\end{array}
\right.
\]
\[
c_2 =
\left\{
\begin{array}{ll}
\frac{1}{2}
& \quad z = 0 \\
\frac{\cosh \sqrt{-z} - 1}{-z}
& \quad z < 0 \\
\frac{1 - \cos \sqrt{z}}{z}
& \quad z > 0
\end{array}
\right.
\]
\[
c_3 =
\left\{
\begin{array}{ll}
\frac{1}{6}
& \quad z = 0 \\
\frac{\sinh \sqrt{-z} - \sqrt{-z}}{-z \sqrt{-z}}
& \quad z < 0 \\
\frac{\sqrt{z} - \sin \sqrt{z}}{z \sqrt{z}}
& \quad z > 0
\end{array}
\right.
\]
\[
c_k = { \sum \limits_{i = 0}^{\infty} }
\frac{ \left( -z \right) ^i }{ \left( k + 2i \right) ! }
\]
\begin{align*}
z c_{k+2} \left( z \right) &=
\frac{1}{k!} - c_k \left( z \right) \\
c_0 \left( 4 z \right) &=
2 c_0 \left( z \right) ^2 - 1 \\
c_1 \left( 4 z \right) &=
c_0 \left( z \right) c_1 \left( z \right) \\
c_2 \left( 4 z \right) &=
\frac{1}{2} c_1 \left( z \right) ^2 \\
c_3 \left( 4 z \right) &=
\frac{
\left( c_2 \left( z \right) +
c_0 \left( z \right) c_3 \left( z \right)
\right)
}{4}
\end{align*}
\[
\frac{d}{ds} c_0 \left( \alpha s^2 \right) =
- \alpha s c_1 \left( \alpha s^2 \right)
\]
\[
\frac{d}{ds} s^{k+1} c_{k+1} \left( \alpha s^2 \right) =
s^k c_k \left( \alpha s^2 \right)
\]
\end{multicols}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment