Last active
April 21, 2022 19:43
-
-
Save rikusalminen/87a9c47f93ff2ebfea0b to your computer and use it in GitHub Desktop.
Celestial mechanics cheat sheet
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% vim:nolist lbr tw=78 expandtab | |
\documentclass[a4paper]{article} | |
\usepackage[utf8]{inputenc} | |
\usepackage[landscape,top=1cm,bottom=1cm,left=1cm,right=1cm]{geometry} | |
\usepackage[tiny]{titlesec} % smaller titles | |
\usepackage{multicol} | |
\usepackage{amsmath} | |
\pagestyle{empty} | |
\setcounter{secnumdepth}{0} | |
\title{Celestial mechanics cheatsheet} | |
\author{Riku Salminen} | |
\date{\today} | |
\begin{document} | |
\begin{multicols}{4} | |
\section{Laws of planetary motion} | |
\begin{itemize} | |
\item Orbit path is a conic section | |
\item Mechanical energy is conserved | |
\item Angular momentum is conserved | |
\begin{itemize} | |
\item Orbital motion in a plane fixed in inertial space | |
\item Constant area velocity | |
\end{itemize} | |
\end{itemize} | |
\section{Law of universal gravitation} | |
\[ | |
\vec{F} = - \frac{G m_0 m_1}{r^3} \vec{r} | |
\] | |
% $\mu = G \left( m_0 + m_1 \right)$ | |
\section{Symbols and quantities} | |
\begin{description} | |
\item[$\mu$] Gravity parameter | |
\item[$\epsilon$] Specific orbital energy | |
\item[$h$] Specific relative angular momentum | |
\item[$e$] Eccentricity | |
\item[$p$] Semi-latus rectum | |
\item[$a$] Semi-major axis | |
\item[$b$] Semi-minor axis | |
\item[$c$] Focal distance | |
\item[$q$] Pericenter distance | |
\item[$f$] True anomaly | |
\item[$E$] Eccentric anomaly | |
\item[$F$] Hyperbolic anomaly | |
\item[$D$] Parabolic anomaly | |
\item[$M$] Mean anomaly | |
\item[$n$] Mean motion | |
\item[$s$] Universal variable | |
\item[$\alpha$] Inverse semi-major axis | |
\item[$r$] Radius | |
\item[$v$] Velocity | |
\item[$\phi$] Flight path angle | |
\end{description} | |
\section{Conic sections} | |
radius and true anomaly | |
\[ | |
r = \frac{p}{1 + e \cos f} | |
\] | |
focus-directrix property | |
focal-radii property | |
\begin{align*} | |
M &= E - e \sin E \\ | |
&= e \sinh F - F | |
\end{align*} | |
\subsection{Eccentric anomaly} | |
\[ | |
M = | |
\left\{ | |
\begin{array}{ll} | |
E - e \sin E | |
& \quad e < 1 \\ | |
e \sinh F - F | |
& \quad e > 1 \\ | |
\frac{1}{6} D^3 + \frac{1}{2} D | |
& \quad e = 1 > 0 | |
\end{array} | |
\right. | |
\] | |
eccentric anomaly | |
hyperbolic anomaly | |
parabolic anomaly | |
\subsection{Subsection} | |
And a few subsections | |
lorem ipsum | |
\columnbreak | |
\section{f \& g functions} | |
\begin{align*} | |
\vec{r} &= f\vec{r_0} + g\vec{v_0} \\ | |
\vec{v} &= \dot{f}\vec{r_0} + \dot{g}\vec{v_0} | |
\end{align*} | |
\begin{equation*} | |
f \dot{g} - \dot{f} g = 1 | |
\end{equation*} | |
\begin{align*} | |
h &= x_0 \dot{y_0} - y_0 \dot{x_0} \\ | |
f &= \frac{x_1 \dot{y_0} - \dot{x_0} y_1}{h} \\ | |
g &= \frac{x_0 y_1 - x_1 y_0}{h} \\ | |
\dot{f} &= \frac{\dot{x_1} \dot{y_0} - \dot{x_0} \dot{y_1}}{h} \\ | |
\dot{g} &= \frac{x_0 \dot{y_1} - \dot{x_1} y_0}{h} | |
\end{align*} | |
\section{f \& g power series} | |
\section{Universal variables} | |
\[ | |
\alpha = \frac{\mu}{a} = \frac{2 \mu}{r} - v^2 = -2 \epsilon | |
\] | |
$ dt = r ds $ | |
\begin{align*} | |
t &= r_0 s c_1 + r_0 \dot{r_0} s^2 c_2 + \mu s^3 c_3 \\ | |
r &= r_0 c_0 + r_0 \dot{r_0} c_1 + \mu s^2 c_2 | |
\end{align*} | |
\columnbreak | |
\section{Stumpff functions} | |
\[ | |
c_0 = | |
\left\{ | |
\begin{array}{ll} | |
1 | |
& \quad z = 0 \\ | |
\cosh \sqrt{-z} | |
& \quad z < 0 \\ | |
\cos \sqrt{z} | |
& \quad z > 0 | |
\end{array} | |
\right. | |
\] | |
\[ | |
c_1 = | |
\left\{ | |
\begin{array}{ll} | |
1 | |
& \quad z = 0 \\ | |
\frac{\sinh \sqrt{-z}}{\sqrt{-z}} | |
& \quad z < 0 \\ | |
\frac{\sin \sqrt{z}}{\sqrt{z}} | |
& \quad z > 0 | |
\end{array} | |
\right. | |
\] | |
\[ | |
c_2 = | |
\left\{ | |
\begin{array}{ll} | |
\frac{1}{2} | |
& \quad z = 0 \\ | |
\frac{\cosh \sqrt{-z} - 1}{-z} | |
& \quad z < 0 \\ | |
\frac{1 - \cos \sqrt{z}}{z} | |
& \quad z > 0 | |
\end{array} | |
\right. | |
\] | |
\[ | |
c_3 = | |
\left\{ | |
\begin{array}{ll} | |
\frac{1}{6} | |
& \quad z = 0 \\ | |
\frac{\sinh \sqrt{-z} - \sqrt{-z}}{-z \sqrt{-z}} | |
& \quad z < 0 \\ | |
\frac{\sqrt{z} - \sin \sqrt{z}}{z \sqrt{z}} | |
& \quad z > 0 | |
\end{array} | |
\right. | |
\] | |
\[ | |
c_k = { \sum \limits_{i = 0}^{\infty} } | |
\frac{ \left( -z \right) ^i }{ \left( k + 2i \right) ! } | |
\] | |
\begin{align*} | |
z c_{k+2} \left( z \right) &= | |
\frac{1}{k!} - c_k \left( z \right) \\ | |
c_0 \left( 4 z \right) &= | |
2 c_0 \left( z \right) ^2 - 1 \\ | |
c_1 \left( 4 z \right) &= | |
c_0 \left( z \right) c_1 \left( z \right) \\ | |
c_2 \left( 4 z \right) &= | |
\frac{1}{2} c_1 \left( z \right) ^2 \\ | |
c_3 \left( 4 z \right) &= | |
\frac{ | |
\left( c_2 \left( z \right) + | |
c_0 \left( z \right) c_3 \left( z \right) | |
\right) | |
}{4} | |
\end{align*} | |
\[ | |
\frac{d}{ds} c_0 \left( \alpha s^2 \right) = | |
- \alpha s c_1 \left( \alpha s^2 \right) | |
\] | |
\[ | |
\frac{d}{ds} s^{k+1} c_{k+1} \left( \alpha s^2 \right) = | |
s^k c_k \left( \alpha s^2 \right) | |
\] | |
\end{multicols} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment