Last active
June 25, 2017 13:45
-
-
Save rinx/cae20e62574087bcd116b53871d1b958 to your computer and use it in GitHub Desktop.
monte carlo 1d radiative transfer code written in haskell using random-mersenne package and parallel computation technique
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import System.Random.Mersenne | |
import Control.Parallel.Strategies hiding (parMap) | |
nt = 4 -- number of thread | |
np = 1000000 -- number of photon | |
tau = 1.0 -- cloud optical thickness | |
sal = 0.5 -- surface albedo | |
omg = 1.0 -- single scattering albedo | |
zu = tau -- atmosphere upper boundary | |
zb = 0.0 -- atmosphere lower boundary | |
main :: IO () | |
main = do | |
seed0 <- getStdGen | |
resEval <- runEval $ parMap (world seed0) $ replicate nt $ fromIntegral $ np `div` nt | |
(sumr, sumt) <- return $ mapTuple sum $ unzip $ resEval | |
print $ [sumr / (fromIntegral np), sumt / (fromIntegral np)] | |
world :: MTGen -> Int -> IO (Double, Double) | |
world seed0 np' = loop 0 0.0 0.0 seed0 | |
where | |
loop :: Int -> Double -> Double -> MTGen -> IO (Double, Double) | |
loop t sumr sumt seed | |
| t == np' = return (sumr, sumt) | |
| otherwise = do | |
(wr, wt) <- solver 1.0 zu (-1.0) 0.0 0.0 seed | |
loop (t+1) (sumr + wr) (sumt + wt) seed | |
solver :: Double -> Double -> Double | |
-> Double -> Double | |
-> MTGen -> IO (Double, Double) | |
solver w z dir sumr sumt seed = do | |
n <- random seed :: IO Double | |
path <- return $ -log(n) | |
nextphase (z + dir * path) | |
where | |
nextphase zn | |
| zn <= zb = solver (w * sal) zb 1.0 sumr (sumt + w) seed | |
| zn > zu = return (sumr + w, sumt) | |
| otherwise = do | |
n2 <- random seed :: IO Double | |
dnew <- return $ if n2 <= 0.5 | |
then 1.0 * dir | |
else -1.0 * dir | |
solver (w * omg) zn dnew sumr sumt seed | |
mapTuple :: (a -> b) -> (a, a) -> (b, b) | |
mapTuple f (a1, a2) = (f a1, f a2) | |
parMap :: (a -> IO b) -> [a] -> Eval (IO [b]) | |
parMap _ [] = return $ return [] | |
parMap f (a:as) = do | |
b <- rpar $ f a | |
bs <- parMap f as | |
return $ do | |
b' <- b | |
bs' <- bs | |
return (b':bs') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
benchmark
for 10000000 photons