Created
May 20, 2014 02:54
-
-
Save rischanlab/9fc3300d4ce865fa3a59 to your computer and use it in GitHub Desktop.
NaiveBayes in R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#author : Rischan Mafrur | |
#email : [email protected] | |
#website : rischanlab.github.io, ourmasjid.me | |
#May 15, 2014 | |
#install requirement packages | |
install.packages("klaR") | |
install.packages("caret") | |
#loading library | |
library("klaR") | |
library("caret") | |
#data initiation | |
getwd() | |
setwd("E:\\RESEARCH\\twitter\\data\\csv") | |
list.files() | |
data <- read.csv("dataset_train.csv") | |
names(data) <-c("followers","followings","num_tweets", | |
"tweet_rate","age","hashtag_ratio", | |
"mention_ratio","reputation","API_ratio", | |
"URL_ratio","account") | |
names(data) | |
x = data[,-11] | |
y = data$account | |
#creating naive bayes model | |
#k-fold cross validation with k=10 | |
model = train(x,y,'nb', | |
trControl=trainControl(method='cv',number=10)) | |
#any warning we can see with warning command | |
warnings() | |
#print out the model | |
model | |
#using model for predicting | |
#show value | |
predict(model$finalModel,x) | |
#show prediction class, in this case real account and campaign account | |
predict(model$finalModel,x)$class | |
#generate confusion matrix table | |
table(predict(model$finalModel,x)$class,y) | |
#plotting the result | |
mN <- NaiveBayes(data$account ~ ., data = data) | |
plot(mN) | |
mK <- NaiveBayes(data$account ~ ., data = data, usekernel=TRUE) | |
plot(mK) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment