Skip to content

Instantly share code, notes, and snippets.

@risenW
Created July 17, 2018 13:35
Show Gist options
  • Save risenW/61d98077f625299383c359bc2bee4c15 to your computer and use it in GitHub Desktop.
Save risenW/61d98077f625299383c359bc2bee4c15 to your computer and use it in GitHub Desktop.
Second part of code for batch training
loss = tf.reduce_mean(tf.square(Y_pred - Y_target))
# Declare the optimizer (G.D)
my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)
loss_batch = []
for i in range(100):
#pick a random 20 data points
rand_index = np.random.choice(100, size=batch_size)
x_batch = np.transpose([x_vals[rand_index]]) # Transpose to the correct shape
y_batch = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={X_data: x_batch, Y_target:y_batch})
#Print the result after 5 intervals
if(i+1) % 5 == 0:
print('Step #', str(i+1), 'W = ', str(sess.run(W)))
temp_loss = sess.run(loss, feed_dict={X_data: x_batch, Y_target:y_batch})
loss_batch.append(temp_loss)
print('Loss = ', temp_loss)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment