Skip to content

Instantly share code, notes, and snippets.

View risenW's full-sized avatar

Rising Odegua risenW

View GitHub Profile
@risenW
risenW / stochastic_training-2.py
Created July 17, 2018 13:26
end code for stochastic training on python using Tensorflow
# Declare an optimizer: here i use gradient descent
my_opt = tf.train.GradientDescentOptimizer(learning_rate=0.02)
#Create the train step
train_step = my_opt.minimize(loss)
n_iterations = 100
loss_stochastic = []
@risenW
risenW / Batch-training.py
Last active July 17, 2018 13:34
Code for batch training using tensorflow
#Load our libraries
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
sess = tf.Session()
# declare batch size
batch_size = 20
x_vals = np.random.normal(1, 0.1, 100)
@risenW
risenW / Batch-training-2.py
Created July 17, 2018 13:35
Second part of code for batch training
loss = tf.reduce_mean(tf.square(Y_pred - Y_target))
# Declare the optimizer (G.D)
my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)
loss_batch = []
for i in range(100):
#pick a random 20 data points
@risenW
risenW / plot-stoc-batch-train.py
Created July 17, 2018 13:39
Code of plot: Stochastic vs batch training.
plt.plot(range(0, 100, 5), loss_batch, 'r--', label='Batch Loss')
plt.plot(range(0, 100, 5), loss_stochastic, 'b-', label='Stochastic Loss')
plt.legend(loc='upper right')
plt.title('Batch training vs Stochastic training')
plt.show()
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@risenW
risenW / ens_import.py
Created July 10, 2019 11:35
Import starting modules
import pandas as pd
import numpy as np
from statistics import mode
german_cred = pd.read_csv('credit_preped.csv')
german_cred.head()
#Import single models
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm import SVR, SVC
from sklearn.neighbors import KNeighborsRegressor,KNeighborsClassifier
#Classification models
log_cf = LogisticRegression(solver='lbfgs', random_state=rand_seed)
svc_cf = SVC(gamma='scale', random_state=rand_seed)
knn_cf = KNeighborsClassifier()
#Classification
for model in classification_models:
model_train(model, features=german_cred, target_name='bad_credit')
#Regression
for model in regression_models:
model_train(model, features=german_cred, target_name='age_yrs', task='reg')
#get the data sets
X_train, X_val, y_train, y_val = get_split_data(german_cred, target_name='age_yrs')
#fit base models
linear_reg.fit(X_train, y_train)
knn_reg.fit(X_train, y_train)
svr_reg.fit(X_train, y_train)
#make predictions with trained models
pred1 = linear_reg.predict(X_val)
print("Linear Regression Model")
print(get_mae(pred1, y_val))
print("KNN Regression Model")
print(get_mae(pred2, y_val))
print("SVR Regression Model")
print(get_mae(pred3, y_val))
print("Average Model")
print(get_mae(avgpred, y_val))