Skip to content

Instantly share code, notes, and snippets.

@rish-16
Created November 21, 2017 02:51
Show Gist options
  • Save rish-16/6dd62a3a5e372c9c8e09b6c648cf1561 to your computer and use it in GitHub Desktop.
Save rish-16/6dd62a3a5e372c9c8e09b6c648cf1561 to your computer and use it in GitHub Desktop.
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
n_h1 = 500
n_h2 = 500
n_classes = 10
batch_size = 128
X = tf.placeholder('float', [None, 784])
Y = tf.placeholder('float')
def ANN(x):
w1 = tf.Variable(tf.random_normal([784, n_h1]))
b1 = tf.Variable(tf.random_normal([n_h1]))
w2 = tf.Variable(tf.random_normal([n_h1, n_h2]))
b3 = tf.Variable(tf.random_normal([n_h2]))
w_out = tf.Variable(tf.random_normal([n_h2, n_classes]))
b_out = tf.Variable(tf.random_normal([n_classes]))
l1 = tf.add(tf.matmul(x, w1), b1)
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, w2), b2)
l2 = tf.nn.relu(l2)
output = tf.add(tf.matmul(l2, w_out), w_out)
return output
def train(x):
prediction = ANN(x)
cost = tf.reduce_mean(tf.nn.softmax_crossentropy_With_logits(logits=prediction, labels=Y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
n_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(n_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.net_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={X:epoch_x, Y:epoch_y})
epoch_loss += c
print ('Epoch', epoch+1, 'Loss: ', epoch_loss)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))*100
print('Accuracy: ', accuracy.eval({X:mnist.test.images, Y:mnist.test.labels}))
train(X)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment