I hereby claim:
- I am risou on github.
- I am risou (https://keybase.io/risou) on keybase.
- I have a public key ASAKDUsZS4Xm6Tld8ewkRZ0pQivYyvzE8GAJq10FkV9crQo
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
/* | |
GitHub の API の rate limit まで何回リクエスト可能回数が残っているかを取得 | |
*/ | |
const request = require('request') | |
const token = '' | |
const options = { | |
url: 'https://api.github.com/rate_limit', | |
json: true, |
use strict; | |
use warnings; | |
use t::Utils; | |
use Test::More; | |
use List::MoreUtils qw/natatime/; | |
use List::Compare; | |
use Math::Random::MT; | |
use Time::Seconds; | |
use Time::HiRes qw/gettimeofday tv_interval/; |
<?xml version="1.0"?> | |
<root> | |
<list> | |
<item> | |
<name>AquaSKK</name> | |
<appdef> | |
<appname>Terminal</appname> | |
<equal>com.googlecode.iterm2</equal> | |
<equal>com.apple.Terminal</equal> | |
</appdef> |
generate :: Int -> [[Int]] | |
generate 0 = [[]] | |
generate n = iter [1..n] [] where | |
iter [] ys = return (reverse ys) | |
iter xs ys = do | |
x <- xs | |
iter (filter (/=x) xs) (x:ys) | |
queens :: Int -> [[Int]] | |
queens n = filter test $ generate n |
#!/usr/bin/env perl6 | |
my $max = 0; | |
for (1..1000) -> $x { | |
for (1..1000) -> $y { | |
$max = 0; | |
for (1..1000) { | |
my @a; | |
my $n = (($x-1)*1000+($y-1))*1000+$_; |
class TwoDimensionsPoint { | |
private double x; | |
private double y; | |
public void setX(double x) { | |
this.x = x; | |
} | |
public double getX() { | |
return this.x; | |
} |
Definition prop0 : forall (A : Prop), A -> A. | |
Proof. | |
intros. | |
apply H. | |
Qed. | |
Goal forall (P Q : Prop), (forall P : Prop, (P -> Q) -> Q) -> ((P -> Q) -> P) -> P. | |
Proof. | |
intro. | |
intro. |
public static void main(String[] args) { | |
System.out.println("start"); | |
for (int i=13;i<100;i++) { | |
for (int j=12;j<i;j++) { | |
for (int k=11;k<j;k++) { | |
for (int l=10;l<k;l++) { | |
int[] n = new int[]{i+j, i+k, i+l, j+k, j+l, k+l, k-l, j-l, j-k, i-l, i-k, i-j}; | |
Arrays.sort(n); |
Definition plus (n : nat)(m : nat) : nat := n + m. | |
Definition id (A : Type)(x : A) : A := x. | |
Definition prop0 : forall (A : Prop), A -> A := fun A x => x. | |
Definition prop1 : forall (A B C : Prop), (B -> C) -> (A -> B) -> (A -> C) := fun A B C f g x => f (g x). | |
Definition q0 : forall (A B : Prop), A -> (A -> B) -> B := fun A B f g => g (f). |