Created
November 19, 2021 11:00
-
-
Save ritchie46/aba83e13133e39c09a42e2aca5220548 to your computer and use it in GitHub Desktop.
answering a question
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
size = 10 ** 2 | |
df = pl.DataFrame({ | |
"groupid": [floor(i*0.1)for i in range(size)], | |
"vectors": [[i,i+1,i-1] for i in range(size)], | |
"numbers": [i for i in range(size)] | |
}) | |
print(df) | |
# Outputs | |
# shape: (100, 3) | |
# ┌─────────┬───────────────┬─────────┐ | |
# │ groupid ┆ vectors ┆ numbers │ | |
# │ --- ┆ --- ┆ --- │ | |
# │ i64 ┆ list [i64] ┆ i64 │ | |
# ╞═════════╪═══════════════╪═════════╡ | |
# │ 0 ┆ [0, 1, -1] ┆ 0 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ 0 ┆ [1, 2, 0] ┆ 1 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ 0 ┆ [2, 3, 1] ┆ 2 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ 0 ┆ [3, 4, 2] ┆ 3 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ ... ┆ ... ┆ ... │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ 9 ┆ [95, 96, 94] ┆ 95 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ 9 ┆ [96, 97, 95] ┆ 96 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ 9 ┆ [97, 98, 96] ┆ 97 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ 9 ┆ [98, 99, 97] ┆ 98 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤ | |
# │ 9 ┆ [99, 100, 98] ┆ 99 │ | |
# └─────────┴───────────────┴─────────┘ | |
# create a default, so we don't have to allocate in a hot loop | |
DEFAULT = pl.Series(np.zeros(768)) | |
# note that a polars custom function must return a Series or a number when used in groupby -> apply | |
def my_agg(s): | |
if len(s) == 0: | |
return DEFAULT | |
return pl.Series(s.to_numpy().mean(axis=0)) | |
out = (df.groupby("groupid") | |
.agg([ | |
pl.col("vectors").apply(my_agg).alias("aggregated_vectors"), | |
pl.mean("numbers").alias("mean_of_numbers_1"), | |
pl.col("numbers").filter(pl.col("numbers") > 20).mean().alias("mean_of_numbers > 20") | |
]) | |
) | |
print(out) | |
# shape: (10, 4) | |
# ┌─────────┬────────────────────┬───────────────────┬──────────────────────┐ | |
# │ groupid ┆ aggregated_vectors ┆ mean_of_numbers_1 ┆ mean_of_numbers > 20 │ | |
# │ --- ┆ --- ┆ --- ┆ --- │ | |
# │ i64 ┆ list [i64] ┆ f64 ┆ f64 │ | |
# ╞═════════╪════════════════════╪═══════════════════╪══════════════════════╡ | |
# │ 0 ┆ [4, 5, 3] ┆ 4.5 ┆ null │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ 4 ┆ [44, 45, 43] ┆ 44.5 ┆ 44.5 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ 2 ┆ [24, 25, 23] ┆ 24.5 ┆ 25 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ 5 ┆ [54, 55, 53] ┆ 54.5 ┆ 54.5 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ ... ┆ ... ┆ ... ┆ ... │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ 9 ┆ [94, 95, 93] ┆ 94.5 ┆ 94.5 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ 8 ┆ [84, 85, 83] ┆ 84.5 ┆ 84.5 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ 6 ┆ [64, 65, 63] ┆ 64.5 ┆ 64.5 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ 3 ┆ [34, 35, 33] ┆ 34.5 ┆ 34.5 │ | |
# ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤ | |
# │ 7 ┆ [74, 75, 73] ┆ 74.5 ┆ 74.5 │ | |
# └─────────┴────────────────────┴───────────────────┴──────────────────────┘ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment