Created
October 5, 2019 10:43
-
-
Save riyafa/d984c4a901003dba6e9361870a07e13a to your computer and use it in GitHub Desktop.
Strassen's algorithm for matrix multiplication using index calculations in java: https://riyafa.wordpress.com/?p=965
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import java.util.Arrays; | |
public class MatrixMultiplicationStrassen { | |
public static void main(String[] args) { | |
/*int[][] A = new int[][]{{1, 3}, {7, 5}}; | |
int[][] B = new int[][]{{6, 8}, {4, 2}};*/ | |
int[][] A = new int[][]{{13, -3, -25, 20}, {-3, -16, -23, 18}, {20, -7, 12, -5}, {-22, 15, -4, 7}}; | |
int[][] B = new int[][]{{13, 10, 11, 12}, {13, 14, -23, 18}, {20, -7, 12, -11}, {-12, -13, -14, 7}}; | |
System.out.println(Arrays.deepToString( | |
strassenMultiply(A, B, 0, 0, 0, 0, A.length) | |
)); | |
} | |
public static int[][] strassenMultiply(int[][] A, int[][] B, int rowA, int colA, int rowB, int colB, int size) { | |
int[][] C = new int[size][size]; | |
if (size == 1) { | |
C[0][0] = A[rowA][colA] * B[rowB][colB]; | |
} else { | |
int newSize = size / 2; | |
int[][] S1 = sub(B, B, rowB, colB + newSize, rowB + newSize, colB + newSize, newSize); | |
int[][] S2 = add(A, A, rowA, colA, rowA, colA + newSize, newSize); | |
int[][] S3 = add(A, A, rowA + newSize, colA, rowA + newSize, colA + newSize, newSize); | |
int[][] S4 = sub(B, B, rowB + newSize, colB, rowB, colB, newSize); | |
int[][] S5 = add(A, A, rowA, colA, rowA + newSize, colA + newSize, newSize); | |
int[][] S6 = add(B, B, rowB, colB, rowB + newSize, colB + newSize, newSize); | |
int[][] S7 = sub(A, A, rowA, colA + newSize, rowA + newSize, colA + newSize, newSize); | |
int[][] S8 = add(B, B, rowB + newSize, colB, rowB + newSize, colB + newSize, newSize); | |
int[][] S9 = sub(A, A, rowA, colA, rowA + newSize, colA, newSize); | |
int[][] S10 = add(B, B, rowB, colB, rowB, colB + newSize, newSize); | |
int[][] P1 = strassenMultiply(A, S1, rowA, colA, 0, 0, newSize); | |
int[][] P2 = strassenMultiply(S2, B, 0, 0, rowB + newSize, colB + newSize, newSize); | |
int[][] P3 = strassenMultiply(S3, B, 0, 0, rowB, colB, newSize); | |
int[][] P4 = strassenMultiply(A, S4, rowA + newSize, colA + newSize, 0, 0, newSize); | |
int[][] P5 = strassenMultiply(S5, S6, 0, 0, 0, 0, newSize); | |
int[][] P6 = strassenMultiply(S7, S8, 0, 0, 0, 0, newSize); | |
int[][] P7 = strassenMultiply(S9, S10, 0, 0, 0, 0, newSize); | |
int[][] C1 = add(sub(add(P5, P4), P2), P6); | |
int[][] C2 = add(P1, P2); | |
int[][] C3 = add(P3, P4); | |
int[][] C4 = sub(sub(add(P5, P1), P3), P7); | |
join(C1, C, 0, 0); | |
join(C2, C, 0, newSize); | |
join(C3, C, newSize, 0); | |
join(C4, C, newSize, newSize); | |
} | |
return C; | |
} | |
private static void join(int[][] C1, int[][] C, int row, int col) { | |
int size = C1.length; | |
for (int i = 0; i < size; i++) { | |
for (int j = 0; j < size; j++) { | |
C[i + row][j + col] = C1[i][j]; | |
} | |
} | |
} | |
private static int[][] add(int[][] A, int[][] B) { | |
int[][] C = new int[A.length][B.length]; | |
for (int i = 0; i < A.length; i++) { | |
for (int j = 0; j < B.length; j++) { | |
C[i][j] = A[i][j] + B[i][j]; | |
} | |
} | |
return C; | |
} | |
private static int[][] add(int[][] A, int[][] B, int rowA, int colA, int rowB, int colB, int size) { | |
int[][] C = new int[size][size]; | |
for (int i = 0; i < size; i++) { | |
for (int j = 0; j < size; j++) { | |
C[i][j] = A[rowA + i][colA + j] + B[rowB + i][colB + j]; | |
} | |
} | |
return C; | |
} | |
private static int[][] sub(int[][] A, int[][] B) { | |
int[][] C = new int[A.length][B.length]; | |
for (int i = 0; i < A.length; i++) { | |
for (int j = 0; j < B.length; j++) { | |
C[i][j] = A[i][j] - B[i][j]; | |
} | |
} | |
return C; | |
} | |
private static int[][] sub(int[][] A, int[][] B, int rowA, int colA, int rowB, int colB, int size) { | |
int[][] C = new int[size][size]; | |
for (int i = 0; i < size; i++) { | |
for (int j = 0; j < size; j++) { | |
C[i][j] = A[rowA + i][colA + j] - B[rowB + i][colB + j]; | |
} | |
} | |
return C; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment