Created
May 3, 2013 11:49
-
-
Save rizalp/5508670 to your computer and use it in GitHub Desktop.
return array of primes below limit using Sieve of Atkin Algorithm
http://en.wikipedia.org/wiki/Sieve_of_Atkin
#JavaScript #primes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function sieveOfAtkin(limit){ | |
var limitSqrt = Math.sqrt(limit); | |
var sieve = []; | |
var n; | |
//prime start from 2, and 3 | |
sieve[2] = true; | |
sieve[3] = true; | |
for (var x = 1; x <= limitSqrt; x++) { | |
var xx = x*x; | |
for (var y = 1; y <= limitSqrt; y++) { | |
var yy = y*y; | |
if (xx + yy >= limit) { | |
break; | |
} | |
// first quadratic using m = 12 and r in R1 = {r : 1, 5} | |
n = (4 * xx) + (yy); | |
if (n <= limit && (n % 12 == 1 || n % 12 == 5)) { | |
sieve[n] = !sieve[n]; | |
} | |
// second quadratic using m = 12 and r in R2 = {r : 7} | |
n = (3 * xx) + (yy); | |
if (n <= limit && (n % 12 == 7)) { | |
sieve[n] = !sieve[n]; | |
} | |
// third quadratic using m = 12 and r in R3 = {r : 11} | |
n = (3 * xx) - (yy); | |
if (x > y && n <= limit && (n % 12 == 11)) { | |
sieve[n] = !sieve[n]; | |
} | |
} | |
} | |
// false each primes multiples | |
for (n = 5; n <= limitSqrt; n++) { | |
if (sieve[n]) { | |
x = n * n; | |
for (i = x; i <= limit; i += x) { | |
sieve[i] = false; | |
} | |
} | |
} | |
//primes values are the one which sieve[x] = true | |
return sieve; | |
} | |
primes = sieveOfAtkin(5000); |
This a performance friendly implementation as stated in wikipedia. But the output seems to be useless cause indexes of an array as the prime numbers cant be used anywhere.
See this link for a converter I coded to return a list of actual prime numbers.
https://gist.github.com/farskid/3501b1b981607483a46b76d61e092e6e
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Why line line 12 y is instanciate with 1 ? Should it not be y = x ?