Skip to content

Instantly share code, notes, and snippets.

@rizar
Created May 7, 2017 18:01
Show Gist options
  • Save rizar/4801481258a7f39edf0b4d3e3526f622 to your computer and use it in GitHub Desktop.
Save rizar/4801481258a7f39edf0b4d3e3526f622 to your computer and use it in GitHub Desktop.
Log of my code when run with float16
Using cuDNN version 5105 on context None
Preallocating 14677/16308 Mb (0.900000) on cuda
Mapped name None to device cuda: Tesla P100-SXM2-16GB (0000:0A:00.0)
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so locally
/Tmp/lisa/os_v5/anaconda/lib/python2.7/site-packages/matplotlib/__init__.py:913: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.
warnings.warn(self.msg_depr % (key, alt_key))
2017-05-07 13:57:59,353: dictlearn.main: INFO: Continue an existing job
2017-05-07 13:58:02,240: /u/bahdanau/Dist/dict_based_learning/dictlearn/lookup.pyc: INFO: Restricting def vocab to 3000
2017-05-07 13:58:02,383: root: DEBUG: Model created
2017-05-07 13:58:02,383: root: DEBUG: Embeddings loaded
2017-05-07 13:58:02,768: root: INFO: Cost parameters
['/extractiveqamodel/begin_readout/linear_0.W (400, 1) trained',
'/extractiveqamodel/begin_readout/linear_0.b (1,) trained',
'/extractiveqamodel/bidir/backward.W_cell_to_forget (200,) trained',
'/extractiveqamodel/bidir/backward.W_cell_to_in (200,) trained',
'/extractiveqamodel/bidir/backward.W_cell_to_out (200,) trained',
'/extractiveqamodel/bidir/backward.W_state (200, 800) trained',
'/extractiveqamodel/bidir/backward.initial_cells (200,) trained',
'/extractiveqamodel/bidir/backward.initial_state (200,) trained',
'/extractiveqamodel/bidir/forward.W_cell_to_forget (200,) trained',
'/extractiveqamodel/bidir/forward.W_cell_to_in (200,) trained',
'/extractiveqamodel/bidir/forward.W_cell_to_out (200,) trained',
'/extractiveqamodel/bidir/forward.W_state (200, 800) trained',
'/extractiveqamodel/bidir/forward.initial_cells (200,) trained',
'/extractiveqamodel/bidir/forward.initial_state (200,) trained',
'/extractiveqamodel/bidir_fork.W (600, 800) trained',
'/extractiveqamodel/bidir_fork.b (800,) trained',
'/extractiveqamodel/encoder_fork.W (300, 800) trained',
'/extractiveqamodel/encoder_fork.b (800,) trained',
'/extractiveqamodel/encoder_rnn.W_cell_to_forget (200,) trained',
'/extractiveqamodel/encoder_rnn.W_cell_to_in (200,) trained',
'/extractiveqamodel/encoder_rnn.W_cell_to_out (200,) trained',
'/extractiveqamodel/encoder_rnn.W_state (200, 800) trained',
'/extractiveqamodel/encoder_rnn.initial_cells (200,) trained',
'/extractiveqamodel/encoder_rnn.initial_state (200,) trained',
'/extractiveqamodel/end_readout/linear_0.W (400, 1) trained',
'/extractiveqamodel/end_readout/linear_0.b (1,) trained',
'/extractiveqamodel/lookuptable.W (3000, 300) trained',
'/extractiveqamodel/lstmreaddefinitions/def_fork.W (300, 800) trained',
'/extractiveqamodel/lstmreaddefinitions/def_fork.b (800,) trained',
'/extractiveqamodel/lstmreaddefinitions/def_rnn.W_cell_to_forget (200,) trained',
'/extractiveqamodel/lstmreaddefinitions/def_rnn.W_cell_to_in (200,) trained',
'/extractiveqamodel/lstmreaddefinitions/def_rnn.W_cell_to_out (200,) trained',
'/extractiveqamodel/lstmreaddefinitions/def_rnn.W_state (200, 800) trained',
'/extractiveqamodel/lstmreaddefinitions/def_rnn.initial_cells (200,) trained',
'/extractiveqamodel/lstmreaddefinitions/def_rnn.initial_state (200,) trained',
'/extractiveqamodel/meanpoolcombiner/state_transform.W (200, 300) trained',
'/extractiveqamodel/meanpoolcombiner/state_transform.b (300,) trained',
'/extractiveqamodel/question_transform.W (200, 200) trained',
'/extractiveqamodel/question_transform.b (200,) trained']
2017-05-07 13:58:02,770: blocks.algorithms: INFO: Taking the cost gradient
2017-05-07 13:58:03,279: blocks.algorithms: INFO: The cost gradient computation graph is built
2017-05-07 13:58:03,292: blocks.algorithms: DEBUG: Computing parameter steps...
2017-05-07 13:58:05,195: blocks.monitoring.evaluators: DEBUG: Compiling initialization and readout functions
2017-05-07 13:58:05,206: blocks.monitoring.evaluators: DEBUG: Initialization and readout functions compiled
2017-05-07 13:58:05,228: blocks.monitoring.evaluators: DEBUG: variable to evaluate: length
2017-05-07 13:58:05,228: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for length
2017-05-07 13:58:05,233: blocks.monitoring.evaluators: DEBUG: variable to evaluate: batch_size
2017-05-07 13:58:05,233: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for batch_size
2017-05-07 13:58:05,235: blocks.monitoring.evaluators: DEBUG: variable to evaluate: mean_cost
2017-05-07 13:58:05,237: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for mean_cost
2017-05-07 13:58:05,239: blocks.monitoring.evaluators: DEBUG: variable to evaluate: exact_match_ratio
2017-05-07 13:58:05,239: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for exact_match_ratio
2017-05-07 13:58:05,242: blocks.monitoring.evaluators: DEBUG: variable to evaluate: extractiveqamodel__encode_context_unk_ratio
2017-05-07 13:58:05,242: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for extractiveqamodel__encode_context_unk_ratio
2017-05-07 13:58:05,244: blocks.monitoring.evaluators: DEBUG: variable to evaluate: lstmreaddefinitions_apply_def_unk_ratio
2017-05-07 13:58:05,244: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for lstmreaddefinitions_apply_def_unk_ratio
2017-05-07 13:58:05,247: blocks.monitoring.evaluators: DEBUG: variable to evaluate: num_definitions
2017-05-07 13:58:05,247: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for num_definitions
2017-05-07 13:58:05,249: blocks.monitoring.evaluators: DEBUG: variable to evaluate: max_definition_length
2017-05-07 13:58:05,250: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for max_definition_length
2017-05-07 13:58:05,253: blocks.monitoring.evaluators: DEBUG: variable to evaluate: total_gradient_norm
2017-05-07 13:58:05,255: blocks.monitoring.evaluators: DEBUG: Using the default (average over minibatches) aggregation scheme for total_gradient_norm
2017-05-07 13:58:05,257: blocks.monitoring.evaluators: DEBUG: Compiling initialization and readout functions
2017-05-07 13:58:05,504: blocks.monitoring.evaluators: DEBUG: Initialization and readout functions compiled
2017-05-07 13:58:05,657: blocks.monitoring.evaluators: DEBUG: variable to evaluate: length
2017-05-07 13:58:05,660: blocks.monitoring.evaluators: DEBUG: variable to evaluate: batch_size
2017-05-07 13:58:05,662: blocks.monitoring.evaluators: DEBUG: variable to evaluate: mean_cost
2017-05-07 13:58:05,665: blocks.monitoring.evaluators: DEBUG: variable to evaluate: exact_match_ratio
2017-05-07 13:58:05,667: blocks.monitoring.evaluators: DEBUG: variable to evaluate: extractiveqamodel__encode_context_unk_ratio
2017-05-07 13:58:05,670: blocks.monitoring.evaluators: DEBUG: variable to evaluate: lstmreaddefinitions_apply_def_unk_ratio
2017-05-07 13:58:05,672: blocks.monitoring.evaluators: DEBUG: variable to evaluate: num_definitions
2017-05-07 13:58:05,675: blocks.monitoring.evaluators: DEBUG: variable to evaluate: max_definition_length
2017-05-07 13:58:05,677: blocks.monitoring.evaluators: DEBUG: Compiling initialization and readout functions
2017-05-07 13:58:05,744: blocks.monitoring.evaluators: DEBUG: Initialization and readout functions compiled
2017-05-07 13:58:05,756: blocks.main_loop: INFO: Entered the main loop
2017-05-07 13:58:05,756: blocks.extensions.saveload: WARNING: No dump found
2017-05-07 13:58:05,757: blocks.extensions.monitoring: INFO: Monitoring on auxiliary data started
2017-05-07 13:58:16,027: blocks.main_loop: ERROR: Error occured during training.
Blocks will attempt to run `on_error` extensions, potentially saving data, before exiting and reraising the error. Note that the usual `after_training` extensions will *not* be run. The original error will be re-raised and also stored in the training log. Press CTRL + C to halt Blocks immediately.
{'batch_size': 128,
'batch_size_valid': 128,
'coattention': True,
'compose_type': 'transform_and_sum',
'data_path': 'squad/squad_from_scratch',
'def_reader': 'LSTMReadDefinitions',
'def_word_gating': 'none',
'dict_path': 'squad/squad_from_scratch/dict4.json',
'dict_vocab_path': '',
'dim': 200,
'emb_dim': 300,
'embedding_path': '',
'exclude_top_k': 3000,
'grad_clip_threshold': 50.0,
'layout': 'squad',
'learning_rate': 0.001,
'max_def_length': 30,
'max_length': 100,
'momentum': 0.9,
'mon_freq_train': 100,
'mon_freq_valid': 1000,
'monitor_parameters': False,
'n_batches': 0,
'num_input_words': 3000,
'reuse_word_embeddings': True,
'save_freq_batches': 1000,
'save_freq_epochs': 1}
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{true_div,no_inplace} due to unsupported float16
Disabling C code for Elemwise{Cast{float16}} due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for DeepCopyOp due to unsupported float16
Disabling C code for Elemwise{add,no_inplace} due to unsupported float16
Disabling C code for Elemwise{add,no_inplace} due to unsupported float16
Disabling C code for Elemwise{add,no_inplace} due to unsupported float16
Disabling C code for Elemwise{add,no_inplace} due to unsupported float16
Disabling C code for Elemwise{add,no_inplace} due to unsupported float16
Disabling C code for Elemwise{add,no_inplace} due to unsupported float16
Disabling C code for Elemwise{add,no_inplace} due to unsupported float16
Disabling C code for Elemwise{add,no_inplace} due to unsupported float16
Disabling C code for BatchedDot due to unsupported float16
Disabling C code for BatchedDot due to unsupported float16
Disabling C code for BatchedDot due to unsupported float16
Disabling C code for GpuMaxAndArgmax{axis=(1,)} due to unsupported float16
Disabling C code for GpuMaxAndArgmax{axis=(1,)} due to unsupported float16
Traceback (most recent call last):
File "/u/bahdanau/Dist/dict_based_learning/bin/train_extractive_qa.py", line 8, in <module>
main(qa_config_registry, train_extractive_qa)
File "/u/bahdanau/Dist/dict_based_learning/dictlearn/main.py", line 66, in main
call_training_func)()
File "/u/bahdanau/Dist/dict_based_learning/dictlearn/util.py", line 230, in func_wrapper
func(*args, **kwargs)
File "/u/bahdanau/Dist/dict_based_learning/dictlearn/main.py", line 62, in call_training_func
args.params, args.fast_start, args.fuel_server)
File "/u/bahdanau/Dist/dict_based_learning/dictlearn/extractive_qa_training.py", line 234, in train_extractive_qa
main_loop.run()
File "/u/bahdanau/Dist/blocks/blocks/main_loop.py", line 198, in run
reraise_as(e)
File "/u/bahdanau/Dist/blocks/blocks/utils/__init__.py", line 258, in reraise_as
six.reraise(type(new_exc), new_exc, orig_exc_traceback)
File "/u/bahdanau/Dist/blocks/blocks/main_loop.py", line 171, in run
self._run_extensions('before_training')
File "/u/bahdanau/Dist/blocks/blocks/main_loop.py", line 264, in _run_extensions
extension.dispatch(CallbackName(method_name), *args)
File "/u/bahdanau/Dist/blocks/blocks/extensions/__init__.py", line 346, in dispatch
self.do(callback_invoked, *(from_main_loop + tuple(arguments)))
File "/u/bahdanau/Dist/blocks/blocks/extensions/monitoring.py", line 95, in do
value_dict = self._evaluator.evaluate(self.data_stream)
File "/u/bahdanau/Dist/blocks/blocks/monitoring/evaluators.py", line 338, in evaluate
self.process_batch(batch)
File "/u/bahdanau/Dist/blocks/blocks/monitoring/evaluators.py", line 309, in process_batch
numerical_values = self._aggregate_fun(**batch)
File "/u/bahdanau/Dist/theano/theano/compile/function_module.py", line 898, in __call__
storage_map=getattr(self.fn, 'storage_map', None))
File "/u/bahdanau/Dist/theano/theano/gof/link.py", line 325, in raise_with_op
reraise(exc_type, exc_value, exc_trace)
File "/u/bahdanau/Dist/theano/theano/compile/function_module.py", line 884, in __call__
self.fn() if output_subset is None else\
File "/u/bahdanau/Dist/theano/theano/gof/op.py", line 897, in rval
r = p(n, [x[0] for x in i], o, params)
File "/u/bahdanau/Dist/theano/theano/gof/op.py", line 778, in perform
"Did you used Theano flags mode=FAST_COMPILE?"
theano.gof.utils.MethodNotDefined: ('perform', <class 'theano.gpuarray.reduction.GpuMaxAndArgmax'>, 'GpuMaxAndArgmax', 'Did you used Theano flags mode=FAST_COMPILE? You can use optimizer=fast_compile instead.')
Apply node that caused the error: GpuMaxAndArgmax{axis=(1,)}(GpuElemwise{Composite{((i0 * i1) - i2)}}[(0, 2)]<gpuarray>.0)
Toposort index: 542
Inputs types: [GpuArrayType<None>(float16, matrix)]
Inputs shapes: [(128, 150)]
Inputs strides: [(300, 2)]
Inputs values: ['not shown']
Outputs clients: [[InplaceGpuDimShuffle{0,x}(GpuMaxAndArgmax{axis=(1,)}.0)], [GpuElemwise{Composite{(EQ(i0, i1) * EQ(i2, i3))}}[]<gpuarray>(GpuMaxAndArgmax{axis=(1,)}.1, GpuFromHost<None>.0, GpuMaxAndArgmax{axis=(1,)}.1, GpuFromHost<None>.0)]]
HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'.
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.
Original exception:
MethodNotDefined: ('perform', <class 'theano.gpuarray.reduction.GpuMaxAndArgmax'>, 'GpuMaxAndArgmax', 'Did you used Theano flags mode=FAST_COMPILE? You can use optimizer=fast_compile instead.')
Apply node that caused the error: GpuMaxAndArgmax{axis=(1,)}(GpuElemwise{Composite{((i0 * i1) - i2)}}[(0, 2)]<gpuarray>.0)
Toposort index: 542
Inputs types: [GpuArrayType<None>(float16, matrix)]
Inputs shapes: [(128, 150)]
Inputs strides: [(300, 2)]
Inputs values: ['not shown']
Outputs clients: [[InplaceGpuDimShuffle{0,x}(GpuMaxAndArgmax{axis=(1,)}.0)], [GpuElemwise{Composite{(EQ(i0, i1) * EQ(i2, i3))}}[]<gpuarray>(GpuMaxAndArgmax{axis=(1,)}.1, GpuFromHost<None>.0, GpuMaxAndArgmax{axis=(1,)}.1, GpuFromHost<None>.0)]]
HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'.
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment