Skip to content

Instantly share code, notes, and snippets.

@rizplate
Forked from mrocklin/01-nyc-taxi.ipynb
Created June 6, 2018 17:27
Show Gist options
  • Save rizplate/64a978a4736cd60bb56bdcfc4767272c to your computer and use it in GitHub Desktop.
Save rizplate/64a978a4736cd60bb56bdcfc4767272c to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"http://dask.readthedocs.io/en/latest/_images/dask_horizontal.svg\"\n",
" align=\"right\"\n",
" width=\"30%\"\n",
" alt=\"Dask logo\">\n",
"\n",
"DataFrames on a Cluster\n",
"=======================\n",
"\n",
"<img src=\"http://www.numfocus.org/uploads/6/0/6/9/60696727/6893890_orig.png\"\n",
" align=\"left\"\n",
" width=\"30%\"\n",
" alt=\"Pandas logo\">\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Read single dataframe from S3 with Pandas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"from s3fs import S3FileSystem\n",
"\n",
"s3 = S3FileSystem(anon=True)\n",
"s3.ls('dask-data/nyc-taxi/2015/')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"with s3.open('dask-data/nyc-taxi/2015/yellow_tripdata_2015-01.csv') as f:\n",
" df = pd.read_csv(f, nrows=5, parse_dates=['tpep_pickup_datetime', 'tpep_dropoff_datetime'])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Parallelize Pandas with Dask.dataframe\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from dask.distributed import Client, progress\n",
"client = Client('127.0.0.1:8786')\n",
"client"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import dask.dataframe as dd\n",
"\n",
"df = dd.read_csv('s3://dask-data/nyc-taxi/2015/*.csv', \n",
" parse_dates=['tpep_pickup_datetime', 'tpep_dropoff_datetime'],\n",
" storage_options={'anon': True})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df = client.persist(df)\n",
"progress(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Dask DataFrames\n",
"---------------\n",
"\n",
"* Coordinate many Pandas DataFrames across a cluster\n",
"* Faithfully implement a subset of the Pandas API\n",
"* Use Pandas under the hood (for speed and maturity)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%time len(df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%time df.passenger_count.sum().compute()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Compute average trip distance grouped by passenger count\n",
"df.groupby(df.passenger_count).trip_distance.mean().compute()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Tip Fraction, grouped by day-of-week and hour-of-day"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df2 = df[(df.tip_amount > 0) & (df.fare_amount > 0)]\n",
"df2 = df2.assign(tip_fraction=df2.tip_amount / df2.fare_amount)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Group df.tpep_pickup_datetime by dayofweek and hour\n",
"dayofweek = df2.groupby(df2.tpep_pickup_datetime.dt.dayofweek).tip_fraction.mean() \n",
"hour = df2.groupby(df2.tpep_pickup_datetime.dt.hour).tip_fraction.mean()\n",
"\n",
"dayofweek, hour = client.persist([dayofweek, hour])\n",
"progress(dayofweek, hour)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from bokeh.plotting import figure, output_notebook, show\n",
"output_notebook()\n",
"\n",
"fig = figure(title='Tip Fraction',\n",
" x_axis_label='Hour of day',\n",
" y_axis_label='Tip Fraction',\n",
" height=300)\n",
"fig.line(x=hour.index.compute(), y=hour.compute(), line_width=3)\n",
"fig.y_range.start = 0\n",
"\n",
"show(fig)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"widgets": {
"state": {
"14d98fb15c9a469a922741b7d51ce7dd": {
"views": [
{
"cell_index": 7
}
]
}
},
"version": "1.2.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment