Created
February 24, 2019 17:40
-
-
Save rjenc29/2a13d1ecd34892ec1df68087dff9c383 to your computer and use it in GitHub Desktop.
Interp benchmark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import sys | |
import timeit | |
import numpy as np | |
from numba import njit | |
np.random.seed(0) | |
ndata=20000 | |
# data to ne interpolated | |
xp = np.linspace(0, 10, 1+ndata) | |
fp = np.sin(xp / 2.0) | |
# test arrays | |
arr0 = np.linspace(2.0, 7.0, 1+ndata*5) | |
arr1 = np.linspace(2.0, 7.0, 1+ndata) | |
arr2 = np.linspace(2.1, 6.8, 1+ndata/2) | |
arr3 = np.linspace(2.1, 7.5, 1+ndata/2) | |
arr4 = np.linspace(1.1, 9.5, 1+ndata/5) | |
arr5 = np.linspace(3.1, 5.3, 1+ndata) * 1.09 | |
arr6 = np.linspace(3.1, 8.3, 1+ndata/2) * 1.09 | |
arr7 = np.linspace(3.1, 5.3, 1+ndata) * 0.91 | |
arr8 = np.linspace(3.1, 8.3, 1+ndata/2) * 0.91 | |
arr9 = np.linspace(3.1, 5.3, 1+ndata/2) + 0.3 * np.sin(np.arange(1+ndata/2)*np.pi/(1+ndata/2)) | |
arr10 = np.linspace(3.1, 5.3, 1+ndata) + np.random.normal(size=1+ndata, scale=0.5/ndata) | |
arr11 = np.linspace(3.1, 5.3, 1+ndata) + np.random.normal(size=1+ndata, scale=2.0/ndata) | |
arr12 = np.linspace(3.1, 5.3, 1+ndata) + np.random.normal(size=1+ndata, scale=5.0/ndata) | |
arr13 = np.linspace(3.1, 5.3, 1+ndata) + np.random.normal(size=1+ndata, scale=20.0/ndata) | |
arr14 = np.linspace(3.1, 5.3, 1+ndata) + np.random.normal(size=1+ndata, scale=50.0/ndata) | |
arr15 = np.linspace(3.1, 5.3, 1+ndata) + np.random.normal(size=1+ndata, scale=200.0/ndata) | |
arr16 = np.random.rand(1+ndata)*9.0 + 0.6 | |
arr17 = np.random.rand(1+ndata*2)*4.0 + 1.3 | |
def much_finer_grid(): | |
out = np.interp(arr0, xp, fp) | |
def finer_grid(): | |
out = np.interp(arr1, xp, fp) | |
def similar_grid(): | |
out = np.interp(arr2, xp, fp) | |
def coarser_grid(): | |
out = np.interp(arr3, xp, fp) | |
def much_coarser_grid(): | |
out = np.interp(arr4, xp, fp) | |
def finer_stretched_grid(): | |
out = np.interp(arr5, xp, fp) | |
def similar_stretched_grid(): | |
out = np.interp(arr5, xp, fp) | |
def finer_compressed_grid(): | |
out = np.interp(arr7, xp, fp) | |
def similar_compressed_grid(): | |
out = np.interp(arr8, xp, fp) | |
def warped_grid(): | |
out = np.interp(arr9, xp, fp) | |
def very_low_noise_grid(): | |
out = np.interp(arr10, xp, fp) | |
def low_noise_grid(): | |
out = np.interp(arr11, xp, fp) | |
def med_noise_grid(): | |
out = np.interp(arr12, xp, fp) | |
def high_noise_grid(): | |
out = np.interp(arr13, xp, fp) | |
def very_high_noise_grid(): | |
out = np.interp(arr14, xp, fp) | |
def extreme_noise_grid(): | |
out = np.interp(arr15, xp, fp) | |
def random_fine_grid(): | |
out = np.interp(arr16, xp, fp) | |
def random_grid(): | |
out = np.interp(arr17, xp, fp) | |
if __name__ == '__main__': | |
print(" Python Version: ", sys.version) | |
print(" Numpy Version: ", np.__version__) | |
funcs = ('much_finer_grid', 'finer_grid', 'similar_grid', | |
'coarser_grid', 'much_coarser_grid', 'finer_stretched_grid', | |
'similar_stretched_grid', 'finer_compressed_grid', | |
'similar_compressed_grid', 'warped_grid', | |
'very_low_noise_grid', 'low_noise_grid', 'med_noise_grid', | |
'high_noise_grid', 'very_high_noise_grid', | |
'extreme_noise_grid', 'random_fine_grid', 'random_grid') | |
for func in funcs: | |
out = timeit.repeat( | |
'%s()' % func, | |
f"from __main__ import {func}; from numba import njit; {func} = njit()({func})", | |
number=200, | |
repeat=3) | |
print(" %s %.5f" % ((func+24*' ')[:24], min(out))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment