Created
March 30, 2016 00:19
-
-
Save rjpower/2efd170628216266a85bd4293a042438 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Activation, Dropout, TimeDistributedDense | |
from keras.layers.recurrent import LSTM | |
text = open('/home/russellp/w/data/citation-graph/abstracts.txt', 'r').read() | |
char_to_idx = { ch: i for (i, ch) in enumerate(sorted(list(set(text)))) } | |
idx_to_char = { i: ch for (ch, i) in char_to_idx.items() } | |
vocab_size = len(char_to_idx) | |
print('Working on %d characters (%d unique)' % (len(text), vocab_size)) | |
SEQ_LENGTH = 64 | |
BATCH_SIZE = 16 | |
BATCH_CHARS = len(text) / BATCH_SIZE | |
LSTM_SIZE = 512 | |
LAYERS = 3 | |
def read_batches(text): | |
T = np.asarray([char_to_idx[c] for c in text], dtype=np.int32) | |
X = np.zeros((BATCH_SIZE, SEQ_LENGTH, vocab_size)) | |
Y = np.zeros((BATCH_SIZE, SEQ_LENGTH, vocab_size)) | |
for i in range(0, BATCH_CHARS - SEQ_LENGTH - 1, SEQ_LENGTH): | |
X[:] = 0 | |
Y[:] = 0 | |
for batch_idx in range(BATCH_SIZE): | |
start = batch_idx * BATCH_CHARS + i | |
for j in range(SEQ_LENGTH): | |
X[batch_idx, j, T[start+j]] = 1 | |
Y[batch_idx, j, T[start+j+1]] = 1 | |
yield X, Y | |
def build_model(batch_size, seq_len): | |
model = Sequential() | |
model.add(LSTM(LSTM_SIZE, return_sequences=True, batch_input_shape=(batch_size, seq_len, vocab_size), stateful=True)) | |
model.add(Dropout(0.2)) | |
for l in range(LAYERS - 1): | |
model.add(LSTM(LSTM_SIZE, return_sequences=True, stateful=True)) | |
model.add(Dropout(0.2)) | |
model.add(TimeDistributedDense(vocab_size)) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', optimizer='adagrad') | |
return model | |
print 'Building model.' | |
test_model = build_model(1, 1) | |
training_model = build_model(BATCH_SIZE, SEQ_LENGTH) | |
print '... done' | |
def sample(epoch, sample_chars=256): | |
test_model.reset_states() | |
test_model.load_weights('/tmp/keras_char_rnn.%d.h5' % epoch) | |
header = 'LSTM based ' | |
sampled = [char_to_idx[c] for c in header] | |
for c in header: | |
batch = np.zeros((1, 1, vocab_size)) | |
batch[0, 0, char_to_idx[c]] = 1 | |
test_model.predict_on_batch(batch) | |
for i in range(sample_chars): | |
batch = np.zeros((1, 1, vocab_size)) | |
batch[0, 0, sampled[-1]] = 1 | |
softmax = test_model.predict_on_batch(batch)[0].ravel() | |
sample = np.random.choice(range(vocab_size), p=softmax) | |
sampled.append(sample) | |
print ''.join([idx_to_char[c] for c in sampled]) | |
for epoch in range(100): | |
for i, (x, y) in enumerate(read_batches(text)): | |
loss = training_model.train_on_batch(x, y) | |
print epoch, i, loss | |
if i % 1000 == 0: | |
training_model.save_weights('/tmp/keras_char_rnn.%d.h5' % epoch, overwrite=True) | |
sample(epoch) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment