Created
December 3, 2013 15:08
-
-
Save rjw57/7770715 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy.signal import fftconvolve | |
from scipy.ndimage import maximum_filter | |
from dtcwt.backend.backend_numpy.lowlevel import reflect | |
import dtcwt.backend.backend_numpy as dtcwt_backend | |
def conv(X, h): | |
# Extend X reflecting appropriately | |
m = tuple(int(np.fix(x*0.5)) for x in h.shape) | |
row_idxs = reflect(np.arange(-m[0],X.shape[0]+m[0]-1), -0.5, X.shape[0]-0.5) | |
col_idxs = reflect(np.arange(-m[1],X.shape[1]+m[1]-1), -0.5, X.shape[1]-0.5) | |
X = (X[row_idxs, :])[:, col_idxs] | |
return fftconvolve(X, h, 'valid') | |
def undec_transform(X, nlevels=3, biort='near_sym_b', qshift='qshift_d', scales=None): | |
t = dtcwt_backend.Transform2d(biort=biort, qshift=qshift) | |
sz = 2 + (4<<nlevels) | |
im = np.zeros((sz,sz)) | |
ft = t.forward(im, nlevels=nlevels) | |
# A sequence of complex impulse responses | |
impulse_responses = [] | |
#scales = [1j, -1j, 1j, -1, 1, -1] | |
for subband_idx in xrange(6): | |
# Copy the zero result. The ugliness of this implies that I should probably add | |
# a .copy() method to the TransformDomainSignal interface. | |
mt = dtcwt_backend.TransformDomainSignal(ft.lowpass, list(np.copy(x) for x in ft.subbands)) | |
sbs = mt.subbands[-1].shape[:2] | |
mt.subbands[-1][sbs[0]>>1,sbs[1]>>1,subband_idx] = 1 | |
real_ir = t.inverse(mt).value | |
mt.subbands[-1][sbs[0]>>1,sbs[1]>>1,subband_idx] = 1j | |
imag_ir = t.inverse(mt).value | |
if scales is not None: | |
s = scales[subband_idx] | |
else: | |
s = 1 | |
impulse_responses.append((real_ir + 1j*imag_ir) * s) | |
subbands = [] | |
for idx in xrange(len(impulse_responses)): | |
subbands.append(conv(X, impulse_responses[idx].real) + 1j * conv(X, impulse_responses[idx].imag)) | |
subbands = np.dstack(subbands) | |
low = conv(X, np.abs(impulse_responses[0])) | |
return low, subbands, impulse_responses |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment