Created
February 20, 2015 13:55
-
-
Save rkempter/785f4637eba82aac7d03 to your computer and use it in GitHub Desktop.
Generate top N lists for each user
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark import SparkContext | |
from heapq import heappush, heappop | |
import re | |
logFilePath = '/Users/rkempter/Downloads/lastfm-dataset-1K/userid-timestamp-artid-artname-traid-traname.tsv' | |
def get_top_N_artists(tuple, top_N=10): | |
""" | |
Returns the top N artists | |
""" | |
key, values = tuple | |
heap = [] | |
for artist_id, count in values: | |
heappush(heap, (-count, artist_id)) | |
top_artists = [] | |
for index in range(top_N): | |
artist_tuple = heappop(heap) | |
top_artists.append(artist_tuple) | |
return "%s: %s\n" % (key, ",".join(top_artists)) | |
def get_user_artist_tuple(row): | |
""" | |
Generate tuples of ((user_id, artist_id), 1) | |
""" | |
row_elements = re.split(r'\t', row) | |
user_id = row_elements[0] | |
artist_id = row_elements[2] | |
return ((user_id, artist_id), 1) | |
spark_context = SparkContext("local[4]", "Get users top 10 artists") | |
logFile = spark_context.textFile(logFilePath) | |
# Generate counts for each (user_id, artist_id) - pair | |
counts = logFile.map(get_user_artist_tuple).filter(lambda row: row[0][1]).reduceByKey(lambda a,b: a + b) | |
# Generate (user_id, (artist_id, count)) -> group by key, apply get_top_N_artists for each group | |
user_counts = counts.map(lambda tuple: (tuple[0][0], (tuple[0][1], tuple[1]))).groupByKey().map(get_top_N_artists) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment