Last active
March 30, 2017 10:10
-
-
Save rkfg/0d078dcd9189bf7f3d6e19b33b4979a3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
13:10:07,659 INFO ~ Allocating [LOOP_ITER] workspace of 0 bytes... | |
13:10:07,821 INFO ~ [LOOP_ITER] spilled DEVICE array of 1152 bytes, capacity of 288 elements | |
13:10:07,831 INFO ~ [LOOP_ITER] spilled DEVICE array of 1152 bytes, capacity of 288 elements | |
13:10:07,840 INFO ~ [LOOP_ITER] spilled DEVICE array of 1152 bytes, capacity of 288 elements | |
13:10:07,844 WARN ~ Workspace initialization OVER_TIME was selected, but number of cycles isn't positive value! | |
13:10:07,844 INFO ~ Allocating [LOOP_FF] workspace of 0 bytes... | |
13:10:07,844 INFO ~ Allocating [LOOP_FF] workspace of 0 bytes... | |
13:10:07,844 INFO ~ [LOOP_FF] spilled DEVICE array of 1152 bytes, capacity of 288 elements | |
CUDA error at /home/rkfg/soft/svn-soft/libnd4j/blas/cuda/NativeOps.cu:4801 code=11(cudaErrorInvalidValue) "result" | |
Failed on [1110846756352] -> [1110844720640], size: [1152], direction: [2], result: [11] | |
13:10:07,846 INFO ~ Allocating [LOOP_ITER] workspace of 6912 bytes... | |
[WARNING] | |
java.lang.reflect.InvocationTargetException | |
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) | |
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) | |
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) | |
at java.lang.reflect.Method.invoke(Method.java:498) | |
at org.codehaus.mojo.exec.ExecJavaMojo$1.run(ExecJavaMojo.java:294) | |
at java.lang.Thread.run(Thread.java:745) | |
Caused by: java.lang.IllegalStateException: MemcpyAsync failed: AllocationShape(offset=0, length=288, stride=1, elementSize=4, dataType=FLOAT) | |
at org.nd4j.jita.flow.impl.SynchronousFlowController.synchronizeToHost(SynchronousFlowController.java:63) | |
at org.nd4j.jita.flow.impl.GridFlowController.synchronizeToHost(GridFlowController.java:36) | |
at org.nd4j.jita.handler.impl.CudaZeroHandler.synchronizeThreadDevice(CudaZeroHandler.java:1227) | |
at org.nd4j.jita.allocator.impl.AtomicAllocator.synchronizeHostData(AtomicAllocator.java:321) | |
at org.nd4j.linalg.jcublas.buffer.BaseCudaDataBuffer.getFloat(BaseCudaDataBuffer.java:965) | |
at org.nd4j.linalg.jcublas.buffer.CudaFloatDataBuffer.getDouble(CudaFloatDataBuffer.java:237) | |
at org.nd4j.linalg.api.shape.Shape.getDouble(Shape.java:163) | |
at org.nd4j.linalg.api.ndarray.BaseNDArray.getDouble(BaseNDArray.java:1697) | |
at org.nd4j.linalg.api.ndarray.BaseNDArray.getInt(BaseNDArray.java:1666) | |
at org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer.preOutput(EmbeddingLayer.java:93) | |
at org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer.activate(EmbeddingLayer.java:113) | |
at org.deeplearning4j.nn.graph.vertex.impl.LayerVertex.doForward(LayerVertex.java:103) | |
at org.deeplearning4j.nn.graph.ComputationGraph.feedForward(ComputationGraph.java:1182) | |
at org.deeplearning4j.nn.graph.ComputationGraph.computeGradientAndScore(ComputationGraph.java:1054) | |
at org.deeplearning4j.optimize.solvers.BaseOptimizer.gradientAndScore(BaseOptimizer.java:160) | |
at org.deeplearning4j.optimize.solvers.StochasticGradientDescent.optimize(StochasticGradientDescent.java:56) | |
at org.deeplearning4j.optimize.Solver.optimize(Solver.java:59) | |
at org.deeplearning4j.nn.graph.ComputationGraph.fit(ComputationGraph.java:854) | |
at dlchat.EncoderDecoderLSTM.train(EncoderDecoderLSTM.java:248) | |
at dlchat.EncoderDecoderLSTM.run(EncoderDecoderLSTM.java:201) | |
at dlchat.EncoderDecoderLSTM.main(EncoderDecoderLSTM.java:149) | |
... 6 more |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment