Created
April 14, 2023 20:54
-
-
Save rlerdorf/7bf2689d614194b8935f31748c0fecd4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
13:53:39.981 INFO cuda:0 Session 1681477031942 starting task 139704256319984 on NVIDIA GeForce RTX 4090 task_manager.py:312 | |
13:53:39.984 INFO cuda:0 request: {'guidance_scale': 7.5, renderer.py:64 | |
'height': 768, | |
'hypernetwork_strength': 0, | |
'lora_alpha': 0, | |
'negative_prompt': '', | |
'num_inference_steps': 90, | |
'num_outputs': 1, | |
'preserve_init_image_color_profile': False, | |
'prompt': 'A cat', | |
'sampler_name': 'euler_a', | |
'seed': 3300925036, | |
'width': 768} | |
13:53:39.987 INFO cuda:0 task data: {'block_nsfw': False, renderer.py:65 | |
'metadata_output_format': 'none', | |
'output_format': 'jpeg', | |
'output_lossless': False, | |
'output_quality': 90, | |
'request_id': 139704256319984, | |
'save_to_disk_path': None, | |
'session_id': '1681477031942', | |
'show_only_filtered_image': True, | |
'stream_image_progress': False, | |
'stream_image_progress_interval': 5, | |
'upscale_amount': 4, | |
'use_face_correction': None, | |
'use_hypernetwork_model': None, | |
'use_lora_model': None, | |
'use_stable_diffusion_model': '/home/rasmus/easy-diffusion/models/stable-diffusion/v2-1_768-ema-pruned.ckpt', | |
'use_upscale': None, | |
'use_vae_model': '/home/rasmus/easy-diffusion/models/vae/vae-ft-mse-840000-ema-pruned.ckpt', | |
'vram_usage_level': 'balanced'} | |
13:53:39.989 INFO cuda:0 Global seed set to 3300925036 seed.py:65 | |
13:53:39.991 INFO cuda:0 Using sampler: EulerAncestralDiscreteScheduler { image_generator.py:234 | |
"_class_name": "EulerAncestralDiscreteScheduler", | |
"_diffusers_version": "0.14.0", | |
"beta_end": 0.012, | |
"beta_schedule": "scaled_linear", | |
"beta_start": 0.00085, | |
"clip_sample": false, | |
"num_train_timesteps": 1000, | |
"prediction_type": "v_prediction", | |
"set_alpha_to_one": false, | |
"steps_offset": 1, | |
"trained_betas": null | |
} | |
because of euler_a | |
13:53:39.993 INFO cuda:0 Parsing the prompt.. image_generator.py:261 | |
13:53:39.994 INFO cuda:0 compel is ready image_generator.py:269 | |
13:53:40.055 INFO cuda:0 Made prompt embeds image_generator.py:271 | |
13:53:40.078 INFO cuda:0 Made negative prompt embeds image_generator.py:273 | |
13:53:40.113 INFO cuda:0 Done parsing the prompt image_generator.py:278 | |
13:53:40.113 INFO cuda:0 applying: StableDiffusionPipeline { image_generator.py:281 | |
"_class_name": "StableDiffusionPipeline", | |
"_diffusers_version": "0.14.0", | |
"feature_extractor": [ | |
null, | |
null | |
], | |
"requires_safety_checker": false, | |
"safety_checker": [ | |
null, | |
null | |
], | |
"scheduler": [ | |
"diffusers", | |
"DDIMScheduler" | |
], | |
"text_encoder": [ | |
"transformers", | |
"CLIPTextModel" | |
], | |
"tokenizer": [ | |
"transformers", | |
"CLIPTokenizer" | |
], | |
"unet": [ | |
"diffusers", | |
"UNet2DConditionModel" | |
], | |
"vae": [ | |
"diffusers", | |
"AutoencoderKL" | |
] | |
} | |
13:53:40.118 INFO cuda:0 Running on diffusers: {'guidance_scale': 7.5, 'generator': <torch._C.Generator object at 0x7f0f18148d50>, 'width': 768, 'height': 768, 'num_inference_steps': 90, image_generator.py:282 | |
'num_images_per_prompt': 1, 'callback': <function make_with_diffusers.<locals>.<lambda> at 0x7f0f67e1e040>, 'prompt_embeds': tensor([[[-0.3135, -0.4475, -0.0083, ..., 0.2544, -0.0327, | |
-0.2959], | |
[ 0.2002, -1.6914, -0.8955, ..., 0.4653, -0.0972, -2.1484], | |
[ 1.1514, -0.3438, 0.5889, ..., 0.1758, 0.2871, -0.8628], | |
..., | |
[ 0.3064, -1.3467, -0.2349, ..., -0.0552, -0.1871, 0.5068], | |
[ 0.3276, -1.3740, -0.2068, ..., -0.3789, -0.2119, 0.6416], | |
[ 0.3452, -2.2246, -0.7661, ..., 0.0298, -0.6050, 0.9458]]], | |
device='cuda:0', dtype=torch.float16), 'negative_prompt_embeds': tensor([[[-0.3135, -0.4475, -0.0083, ..., 0.2544, -0.0327, -0.2959], | |
[ 1.4082, 0.0072, -0.4297, ..., 1.0371, -0.6753, 1.5020], | |
[ 1.8613, -1.0859, -1.0635, ..., 2.0293, -1.1387, -0.1884], | |
..., | |
[ 0.0033, -1.5000, -0.3901, ..., -0.1841, -0.3230, -0.0181], | |
[ 0.0262, -1.5527, -0.4165, ..., -0.4441, -0.3992, 0.1919], | |
[-0.0708, -2.6152, -1.0488, ..., -0.0028, -0.5015, 0.4028]]], | |
device='cuda:0', dtype=torch.float16)} | |
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 90/90 [00:20<00:00, 4.30it/s] | |
13:54:01.694 INFO cuda:0 Task completed renderer.py:56 | |
13:54:01.768 INFO cuda:0 Session 1681477031942 task 139704256319984 completed by NVIDIA GeForce RTX 4090. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment