Skip to content

Instantly share code, notes, and snippets.

@rlmacsween
Created June 24, 2019 17:11
Show Gist options
  • Save rlmacsween/166b7c1c1b0c5f466a0fe9b467d61537 to your computer and use it in GitHub Desktop.
Save rlmacsween/166b7c1c1b0c5f466a0fe9b467d61537 to your computer and use it in GitHub Desktop.
from collections import Counter
import pandas as pd
df = pd.read_hdf('training.h5')
g = df.groupby('slug')
def get_sample(slug):
return df.ix[g.groups[slug]]
def true_total(sample):
return sample.ix[sample.gross_amount.idxmax()].token
def parse_dollar_amount(s):
if not s.startswith('$'):
return None
result = []
for c in s:
if c.isnumeric() or c == '.':
result.append(c)
try:
return float(''.join(result))
except ValueError:
return None
def parse_non_dollar(s):
if not s or not s[0].isnumeric() or any(c in s for c in '/-%'):
return None
result = []
for c in s:
if c.isnumeric() or c == '.':
result.append(c)
try:
return float(''.join(result))
except ValueError:
return None
alignment_threshold = 2
def score(x, sample, dollar_counts, non_dollar_counts):
slug, page, x0, y0, x1, y1, token, _ = x
result = parse_dollar_amount(token)
if result is not None:
multiple = dollar_counts.get(token) > 1
return (2, int(multiple), int('.' in token), result)
result = parse_non_dollar(token)
if result is not None:
multiple = non_dollar_counts.get(token) > 1
return (1, int(multiple), int('.' in token), result)
else:
return (0, 0, -1)
def argmax(L):
"""
Needed because we can't make a numpy array of tuples.
"""
m = max(L)
for i in range(len(L)):
if L[i] == m:
return i
def predict_total_amount(sample):
values = sample.get_values()
values = []
dollar_tokens = []
non_dollar_tokens = []
for v in sample.get_values():
s = v[-2]
if parse_dollar_amount(s) is not None:
values.append(v)
dollar_tokens.append(s)
elif parse_non_dollar(s) is not None:
values.append(v)
non_dollar_tokens.append(s)
dollar_counts = Counter(dollar_tokens)
non_dollar_counts = Counter(non_dollar_tokens)
scores = [score(x, sample, dollar_counts, non_dollar_counts) for x in values]
return values[argmax(scores)][-2]
if __name__ == '__main__':
match_count = 0
slugs = df.slug.unique()
length = len(slugs)
for slug in slugs:
sample = get_sample(slug)
estimate = predict_total_amount(sample)
true = true_total(sample)
if estimate != true:
print(slug)
print(estimate, true)
print()
if estimate == true:
match_count += 1
print('Accuracy: ', 100 * match_count / length)
@jstray
Copy link

jstray commented Jun 24, 2019

Thanks! This is a great baseline for total extraction, an excellent reality check. I'll shortly be moving on to extracting more difficult fields, such as advertiser names.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment