Created
September 11, 2023 11:29
-
-
Save rmcelreath/39dd410fc6bb758e54d79249b11eeb2f to your computer and use it in GitHub Desktop.
Demonstration of how normal and student-t distributions interact in Bayesian updating
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# prior - likelihood conflict | |
library(rethinking) | |
yobs <- 0 | |
mtt <- ulam( | |
alist( | |
y ~ dstudent(2,mu,1), | |
mu ~ dstudent(2,10,1) | |
), data=list(y=yobs) , chains=4 , iter=2000 ) | |
mnn <- ulam( | |
alist( | |
y ~ dnorm(mu,1), | |
mu ~ dnorm(10,1) | |
), data=list(y=yobs) , chains=4 , iter=2000) | |
mtn <- ulam( | |
alist( | |
y ~ dstudent(2,mu,1), | |
mu ~ dnorm(10,1) | |
), data=list(y=yobs) , chains=4 , iter=2000) | |
mnt <- ulam( | |
alist( | |
y ~ dnorm(mu,1), | |
mu ~ dstudent(2,10,1) | |
), data=list(y=yobs) , chains=4 , iter=2000) | |
# plot | |
par(mfrow=c(2,2),cex=1.05) | |
ymax <- 0.53 | |
xlwd <- 1.5 | |
postcol <- 2 | |
xadj <- 0.8 | |
p <- extract.samples(mnn) | |
dens(p$mu, xlim=c(-5,15), ylim=c(0,ymax), lwd=xlwd+1 , col=postcol, xlab="" ,adj=xadj ) | |
#mtext("normal prior, normal likelihood") | |
curve( dnorm(yobs,x,1) , add=TRUE , lty=1 , lwd=xlwd ) # lik | |
curve( dnorm(x,10,1) , add=TRUE , lty=2 , lwd=xlwd ) # prior | |
text(0,0.42,"likelihood") | |
text(10,0.42,"prior") | |
p <- extract.samples(mtt) | |
dens(p$mu , xlim=c(-5,15) , ylim=c(0,ymax) , lwd=xlwd+1 , col=postcol , xlab="" ,adj=xadj ) | |
#mtext("t prior, t likelihood") | |
curve( dstudent(yobs,2,x,1) , add=TRUE , lty=1 , lwd=xlwd ) # lik | |
curve( dstudent(x,2,10,1) , add=TRUE , lty=2 , lwd=xlwd ) # prior | |
text(0,0.42,"likelihood") | |
text(10,0.42,"prior") | |
p <- extract.samples(mnt) | |
dens(p$mu, xlim=c(-5,15), ylim=c(0,ymax), lwd=xlwd+1 , col=postcol, xlab="" ,adj=xadj ) | |
#mtext("t prior, normal likelihood") | |
curve( dnorm(yobs,x,1) , add=TRUE , lty=1 , lwd=xlwd) # lik | |
curve( dstudent(x,2,10,1) , add=TRUE , lty=2 , lwd=xlwd) # prior | |
text(0,0.42,"likelihood") | |
text(10,0.42,"prior") | |
p <- extract.samples(mtn) | |
dens(p$mu, xlim=c(-5,15), ylim=c(0,ymax), lwd=xlwd+1 , col=postcol, xlab="" ,adj=xadj ) | |
#mtext("normal prior, t likelihood") | |
curve( dstudent(yobs,2,x,1) , add=TRUE , lty=1 , lwd=xlwd) # lik | |
curve( dnorm(x,10,1) , add=TRUE , lty=2 , lwd=xlwd) # prior | |
text(0,0.42,"likelihood") | |
text(10,0.42,"prior") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment