-
-
Save rmdort/602558102f90c1d060300c05c23261b2 to your computer and use it in GitHub Desktop.
Keras Layer that implements an Attention mechanism for temporal data. Supports Masking. Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.layers.core import Layer | |
from keras import initializers, regularizers, constraints | |
from keras import backend as K | |
class Attention(Layer): | |
def __init__(self, | |
kernel_regularizer=None, bias_regularizer=None, | |
kernel_constraint=None, bias_constraint=None, | |
use_bias=True, **kwargs): | |
""" | |
Keras Layer that implements an Attention mechanism for temporal data. | |
Supports Masking. | |
Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756] | |
# Input shape | |
3D tensor with shape: `(samples, steps, features)`. | |
# Output shape | |
2D tensor with shape: `(samples, features)`. | |
:param kwargs: | |
Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True. | |
The dimensions are inferred based on the output shape of the RNN. | |
Example: | |
model.add(LSTM(64, return_sequences=True)) | |
model.add(Attention()) | |
""" | |
self.supports_masking = True | |
self.kernel_initializer = initializers.get('glorot_uniform') | |
self.kernel_regularizer = regularizers.get(kernel_regularizer) | |
self.bias_regularizer = regularizers.get(bias_regularizer) | |
self.kernel_constraint = constraints.get(kernel_constraint) | |
self.bias_constraint = constraints.get(bias_constraint) | |
self.use_bias = use_bias | |
super(Attention, self).__init__(**kwargs) | |
def build(self, input_shape): | |
assert len(input_shape) == 3 | |
self.kernel = self.add_weight((input_shape[-1], 1), | |
initializer=self.kernel_initializer, | |
name='{}_W'.format(self.name), | |
regularizer=self.kernel_regularizer, | |
constraint=self.kernel_constraint) | |
if self.use_bias: | |
self.bias = self.add_weight((input_shape[1],), | |
initializer='zero', | |
name='{}_b'.format(self.name), | |
regularizer=self.bias_regularizer, | |
constraint=self.bias_constraint) | |
else: | |
self.bias = None | |
self.built = True | |
def compute_mask(self, x, input_mask=None): | |
# do not pass the mask to the next layers | |
return None | |
def call(self, x, mask=None): | |
print("W: ", K.int_shape(self.kernel)) | |
print("x: ", K.int_shape(x)) | |
eij = K.dot(x, self.kernel) | |
print("eij: ", K.int_shape(eij)) | |
eij = K.squeeze(eij, -1) | |
print("eij: ", K.int_shape(eij)) | |
if self.use_bias: | |
eij += self.bias | |
eij = K.tanh(eij) | |
a = K.softmax(eij) | |
a = K.expand_dims(a) | |
weighted_input = x * a | |
return K.sum(weighted_input, axis=1) | |
def compute_output_shape(self, input_shape): | |
return (input_shape[0], input_shape[-1],) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment