Skip to content

Instantly share code, notes, and snippets.

@rmdort
Forked from chssch/spacy_srl.py
Created January 27, 2018 03:09
Show Gist options
  • Save rmdort/c051e1fa37b1835685a753f1f27e059f to your computer and use it in GitHub Desktop.
Save rmdort/c051e1fa37b1835685a753f1f27e059f to your computer and use it in GitHub Desktop.
Use AllenNLP Semantic Role Labeling (http://allennlp.org/) with SpaCy 2.0 (http://spacy.io) components and extensions
# This small script shows how to use AllenNLP Semantic Role Labeling (http://allennlp.org/) with SpaCy 2.0 (http://spacy.io) components and extensions
# Script installs allennlp default model
# Important: Install allennlp form source and replace the spacy requirement with spacy-nightly in the requirements.txt
# Developed for SpaCy 2.0.0a18
from allennlp.commands import DEFAULT_MODELS
from allennlp.common.file_utils import cached_path
from allennlp.service.predictors import SemanticRoleLabelerPredictor
from allennlp.models.archival import load_archive
import spacy
from spacy.tokens import Token
class SRLComponent(object):
'''
A SpaCy pipeline component for SRL
'''
name = 'Semantic Role Labeler'
def __init__(self):
archive = load_archive(self._get_srl_model())
self.predictor = SemanticRoleLabelerPredictor.from_archive(archive, "semantic-role-labeling")
Token.set_extension('srl_arg0')
Token.set_extension('srl_arg1')
def __call__(self, doc):
# See https://github.com/allenai/allennlp/blob/master/allennlp/service/predictors/semantic_role_labeler.py#L74
words = [token.text for token in doc]
for i, word in enumerate(doc):
if word.pos_ == "VERB":
verb = word.text
verb_labels = [0 for _ in words]
verb_labels[i] = 1
instance = self.predictor._dataset_reader.text_to_instance(doc, verb_labels)
output = self.predictor._model.forward_on_instance(instance, -1)
tags = output['tags']
# TODO: Tagging/dependencies can be done more elegant
if "B-ARG0" in tags:
start = tags.index("B-ARG0")
end = max([i for i, x in enumerate(tags) if x == "I-ARG0"] + [start]) + 1
word._.set("srl_arg0", doc[start:end])
if "B-ARG1" in tags:
start = tags.index("B-ARG1")
end = max([i for i, x in enumerate(tags) if x == "I-ARG1"] + [start]) + 1
word._.set("srl_arg1", doc[start:end])
return doc
def _get_srl_model(self):
return cached_path(DEFAULT_MODELS['semantic-role-labeling'])
def demo():
nlp = spacy.load("en")
nlp.add_pipe(SRLComponent(), after='ner')
doc = nlp("Apple sold 1 million Plumbuses this month.")
for w in doc:
if w.pos_ == "VERB":
print("('{}', '{}', '{}')".format(w._.srl_arg0, w, w._.srl_arg1))
# ('Apple', 'sold', '1 million Plumbuses)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment