Last active
December 18, 2017 13:22
-
-
Save rmdort/dd1b39346b6fabd42f254e09ef45aa63 to your computer and use it in GitHub Desktop.
Similar to attention layer in https://github.com/synthesio/hierarchical-attention-networks . Ported to keras 2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class AttentionLayer(Layer): | |
| ''' | |
| Attention layer. | |
| Usage: | |
| lstm_layer = LSTM(dim, return_sequences=True) | |
| attention = AttentionLayer()(lstm_layer) | |
| sentenceEmb = merge([lstm_layer, attention], mode=lambda x:x[1]*x[0], output_shape=lambda x:x[0]) | |
| sentenceEmb = Lambda(lambda x:K.sum(x, axis=1), output_shape=lambda x:(x[0],x[2]))(sentenceEmb) | |
| ''' | |
| def __init__(self, init='glorot_uniform', kernel_regularizer=None, bias_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): | |
| self.supports_masking = True | |
| self.init = initializers.get(init) | |
| self.kernel_initializer = initializers.get('glorot_uniform') | |
| self.kernel_regularizer = regularizers.get(kernel_regularizer) | |
| self.bias_regularizer = regularizers.get(bias_regularizer) | |
| self.kernel_constraint = constraints.get(kernel_constraint) | |
| self.bias_constraint = constraints.get(bias_constraint) | |
| super(AttentionLayer, self).__init__(**kwargs) | |
| def build(self, input_shape): | |
| self.kernel = self.add_weight((input_shape[-1], 1), | |
| initializer=self.kernel_initializer, | |
| name='{}_W'.format(self.name), | |
| regularizer=self.kernel_regularizer, | |
| constraint=self.kernel_constraint) | |
| self.built = True | |
| def compute_mask(self, input, mask): | |
| return mask | |
| def call(self, x, mask=None): | |
| multData = K.exp(K.dot(x, self.kernel)) | |
| if mask is not None: | |
| mask = K.cast(mask, K.floatx()) | |
| mask = K.expand_dims(mask) | |
| multData = mask*multData | |
| output = multData/(K.sum(multData, axis=1)+K.epsilon())[:,None] | |
| return output | |
| def get_output_shape_for(self, input_shape): | |
| newShape = list(input_shape) | |
| newShape[-1] = 1 | |
| return tuple(newShape) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment