React recently introduced an experimental profiler API. This page gives instructions on how to use this API in a production release of your app.
Table of Contents
| class AttentionLSTM(LSTM): | |
| """LSTM with attention mechanism | |
| This is an LSTM incorporating an attention mechanism into its hidden states. | |
| Currently, the context vector calculated from the attended vector is fed | |
| into the model's internal states, closely following the model by Xu et al. | |
| (2016, Sec. 3.1.2), using a soft attention model following | |
| Bahdanau et al. (2014). | |
| The layer expects two inputs instead of the usual one: |
| def dot_product(x, kernel): | |
| """ | |
| Wrapper for dot product operation, in order to be compatible with both | |
| Theano and Tensorflow | |
| Args: | |
| x (): input | |
| kernel (): weights | |
| Returns: | |
| """ | |
| if K.backend() == 'tensorflow': |
| import threading | |
| import time | |
| class ThreadingExample(object): | |
| """ Threading example class | |
| The run() method will be started and it will run in the background | |
| until the application exits. | |
| """ |
| # This small script shows how to use AllenNLP Semantic Role Labeling (http://allennlp.org/) with SpaCy 2.0 (http://spacy.io) components and extensions | |
| # Script installs allennlp default model | |
| # Important: Install allennlp form source and replace the spacy requirement with spacy-nightly in the requirements.txt | |
| # Developed for SpaCy 2.0.0a18 | |
| from allennlp.commands import DEFAULT_MODELS | |
| from allennlp.common.file_utils import cached_path | |
| from allennlp.service.predictors import SemanticRoleLabelerPredictor | |
| from allennlp.models.archival import load_archive |
| /** | |
| * number_format(number, decimals, decPoint, thousandsSep) in JavaScript, known from PHP. | |
| * It formats a number to a string with grouped thousands, with custom seperator and custom decimal point | |
| * @param {number} number - number to format | |
| * @param {number} [decimals=0] - (optional) count of decimals to show | |
| * @param {string} [decPoint=.] - (optional) decimal point | |
| * @param {string} [thousandsSep=,] - (optional) thousands seperator | |
| * @author Felix Leupold <[email protected]> | |
| */ | |
| function number_format(number, decimals, decPoint, thousandsSep) { |
| enum keyCodes { | |
| BACKSPACE: 8, | |
| TAB: 9, | |
| ENTER: 13, | |
| SHIFT: 16, | |
| CTRL: 17, | |
| ALT: 18, | |
| PAUSE: 19, | |
| CAPS_LOCK: 20, | |
| ESCAPE: 27, |
| { | |
| "scripts": { | |
| "build": "npm run build:es2015 && npm run build:esm && npm run build:cjs && npm run build:umd && npm run build:umd:min", | |
| "build:es2015": "tsc --module es2015 --target es2015 --outDir dist/es2015", | |
| "build:esm": "tsc --module es2015 --target es5 --outDir dist/esm", | |
| "build:cjs": "tsc --module commonjs --target es5 --outDir dist/cjs", | |
| "build:umd": "rollup dist/esm/index.js --format umd --name YourLibrary --sourceMap --output dist/umd/yourlibrary.js", | |
| "build:umd:min": "cd dist/umd && uglifyjs --compress --mangle --source-map --screw-ie8 --comments --o yourlibrary.min.js -- yourlibrary.js && gzip yourlibrary.min.js -c > yourlibrary.min.js.gz", | |
| } | |
| } |
| import React, {useState} from 'react'; | |
| import {View, Text, TouchableOpacity, StyleSheet} from 'react-native'; | |
| const App = () => { | |
| const [count, setCount] = useState(0); | |
| return ( | |
| <View style={styles.container}> | |
| <Text style={styles.title}>Hello from {'\n'}React Native Web!</Text> | |
| <TouchableOpacity | |
| onPress={() => setCount(count + 1)} |
React recently introduced an experimental profiler API. This page gives instructions on how to use this API in a production release of your app.
Table of Contents