Created
July 28, 2023 07:23
-
-
Save rmitula/6415bc463a869b9bb2cc6c13fe2a7ee2 to your computer and use it in GitHub Desktop.
Listing 3. Sample Python script in AWS Glue Job leverages Apache Spark to transform JSON data from the Raw Data Zone into Apache Iceberg format in the Curated Data Zone, simultaneously updating the AWS Glue Data Catalog
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import boto3 | |
from pyspark.sql.functions import concat_ws, lpad | |
from awsglue.transforms import * | |
from awsglue.utils import getResolvedOptions | |
from pyspark.context import SparkContext | |
from awsglue.context import GlueContext | |
from awsglue.job import Job | |
# Initialize Spark and Glue context | |
sc = SparkContext() | |
glueContext = GlueContext(sc) | |
spark = glueContext.spark_session | |
# Retrieve and initialize job parameters | |
args = getResolvedOptions(sys.argv, ["JOB_NAME"]) | |
job = Job(glueContext) | |
job.init(args["JOB_NAME"], args) | |
# Function to check if a given table exists in the database | |
def table_exist(database, table_name): | |
client = boto3.client("glue") | |
try: | |
response = client.get_table(DatabaseName=database, Name=table_name) | |
return True | |
except client.exceptions.EntityNotFoundException: | |
return False | |
# Define catalog, schema, and table name | |
catalog_name = "glue_catalog" | |
database_name = "apache_iceberg_showcase" | |
table_name = "products" | |
# Load data from S3 into a DataFrame | |
df = spark.read.format("json").load("s3:///raw-zone/products/year=2023/month=05/day=01/") | |
# Print the schema of the dataframe | |
df.printSchema() | |
# Check if the table exists | |
if table_exist(database_name, table_name): | |
# Create a temporary view for the dataframe | |
temporary_view = "TempView" | |
df.createOrReplaceTempView(temporary_view) | |
# Perform the UPSERT operation using SQL statement | |
spark.sql(f""" | |
MERGE INTO {catalog_name}.{database_name}.{table_name} AS target | |
USING {temporary_view} AS source | |
ON target.product_id = source.product_id | |
WHEN MATCHED THEN | |
UPDATE SET | |
target.name = source.name, | |
target.category = source.category, | |
target.variants = source.variants, | |
target.specifications = source.specifications, | |
target.ratings = source.ratings, | |
target.price = source.price | |
WHEN NOT MATCHED THEN | |
INSERT * | |
""") | |
else: | |
# If the table doesn't exist, create the table and perform the INSERT operation | |
df.writeTo(f"{catalog_name}.{database_name}.{table_name}") \ | |
.tableProperty("format-version", "2") \ | |
.tableProperty("location", "s3:///curated-zone/products") \ | |
.create() | |
# Commit the job | |
job.commit() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi thanks for the script. Question, why do you use
boto3
instead ofspark
context? I prefer using thespark
, but usingspark.catalog.tablesExists
never recognizes my iceberg tables 🤔