Created
December 16, 2015 01:45
-
-
Save rnowling/bab32a99ea0cb9575dee to your computer and use it in GitHub Desktop.
Imputing Missing Data and Random Forest Variable Importance Scores
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
import random | |
import sys | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.ensemble import RandomForestClassifier | |
from scipy.stats import mstats | |
N_SAMPLES = 100 | |
N_TREES = 100 | |
N_SIMS = 100 | |
HETERO_PROB = [0.0, 0.0, 0.0, 0.25, 0.25, 0.25, 0.50, 0.50, 0.50] | |
N_UNCORRELATED = 3 | |
MISSING_DATA = [0, 10, 20] | |
def generate_data(n_samples, hetero_probability, n_uncorrelated): | |
# assume SNPs are biallelic, features are counts of each allele | |
# for each of the 3 genotypes (A/A, A/T, T/T), hetero prob is given | |
# and the homo are (1 - hetero) / 2 | |
n_snps = len(hetero_probability) + n_uncorrelated | |
n_features = 2 * n_snps | |
features = np.zeros((n_samples, n_features)) | |
labels = np.zeros(n_samples) | |
for i in xrange(n_samples): | |
labels[i] = random.randint(0, 1) | |
feature_idx = 0 | |
for j in xrange(n_uncorrelated): | |
allele = random.randint(0, 2) | |
if allele == 0: | |
features[i, feature_idx] = 2 | |
elif allele == 1: | |
features[i, feature_idx] = 1 | |
features[i, feature_idx + 1] = 1 | |
else: | |
features[i, feature_idx + 1] = 2 | |
feature_idx += 2 | |
for p in hetero_probability: | |
r = random.random() | |
if r < p: | |
features[i, feature_idx] = 1 | |
features[i, feature_idx + 1] = 1 | |
else: | |
features[i, feature_idx + labels[i]] = 2 | |
feature_idx += 2 | |
return features, labels | |
def zero_out(X, missing_data, labels, impute_mode): | |
reverse_labels = defaultdict(list) | |
for i, label in enumerate(labels): | |
reverse_labels[label].append(i) | |
for snp_idx in xrange(X.shape[1] / 2): | |
miss_individuals = random.sample(range(X.shape[0]), missing_data[snp_idx % len(missing_data)]) | |
if impute_mode == "zero": | |
# zero out | |
for individual_idx in miss_individuals: | |
X[individual_idx, snp_idx * 2] = 0 | |
X[individual_idx, snp_idx * 2 + 1] = 0 | |
elif impute_mode == "mode": | |
print "Imputing via mode" | |
modes = dict() | |
for label, individuals in reverse_labels.iteritems(): | |
alleles = [] | |
for individual_idx in individuals: | |
if individual_idx in miss_individuals: | |
continue | |
if X[individual_idx, snp_idx * 2] == 2: | |
alleles.append(2) | |
elif X[individual_idx, snp_idx * 2] == 1: | |
alleles.append(1) | |
elif X[individual_idx, snp_idx * 2 + 1] == 2: | |
alleles.append(0) | |
modes[label] = int(mstats.mode(alleles)[0]) | |
print modes | |
for individual_idx in miss_individuals: | |
label = labels[individual_idx] | |
mode = modes[label] | |
if mode == 2: | |
print X[individual_idx, snp_idx * 2], X[individual_idx, snp_idx * 2 + 1] | |
print 2, 0 | |
X[individual_idx, snp_idx * 2] == 2.0 | |
X[individual_idx, snp_idx * 2 + 1] == 0.0 | |
elif mode == 1: | |
print X[individual_idx, snp_idx * 2], X[individual_idx, snp_idx * 2 + 1] | |
print 1, 1 | |
X[individual_idx, snp_idx * 2] == 1.0 | |
X[individual_idx, snp_idx * 2 + 1] == 1.0 | |
else: | |
print X[individual_idx, snp_idx * 2], X[individual_idx, snp_idx * 2 + 1] | |
print 0, 2 | |
X[individual_idx, snp_idx * 2] == 0.0 | |
X[individual_idx, snp_idx * 2 + 1] == 2.0 | |
if impute_mode == "sample": | |
print "Imputing via sampling" | |
alleles = defaultdict(list) | |
for label, individuals in reverse_labels.iteritems(): | |
for individual_idx in individuals: | |
if individual_idx in miss_individuals: | |
continue | |
if X[individual_idx, snp_idx * 2] == 2: | |
alleles[label].append(2) | |
elif X[individual_idx, snp_idx * 2] == 1: | |
alleles[label].append(1) | |
elif X[individual_idx, snp_idx * 2 + 1] == 2: | |
alleles[label].append(0) | |
for individual_idx in miss_individuals: | |
label = labels[individual_idx] | |
allele = random.choice(alleles[label]) | |
if allele == 2: | |
print X[individual_idx, snp_idx * 2], X[individual_idx, snp_idx * 2 + 1] | |
print 2, 0 | |
X[individual_idx, snp_idx * 2] == 2.0 | |
X[individual_idx, snp_idx * 2 + 1] == 0.0 | |
elif allele == 1: | |
print X[individual_idx, snp_idx * 2], X[individual_idx, snp_idx * 2 + 1] | |
print 1, 1 | |
X[individual_idx, snp_idx * 2] == 1.0 | |
X[individual_idx, snp_idx * 2 + 1] == 1.0 | |
else: | |
print X[individual_idx, snp_idx * 2], X[individual_idx, snp_idx * 2 + 1] | |
print 0, 2 | |
X[individual_idx, snp_idx * 2] == 0.0 | |
X[individual_idx, snp_idx * 2 + 1] == 2.0 | |
def plot_variable_importances(flname, variable_importances, title): | |
plt.clf() | |
plt.boxplot(x=variable_importances) | |
plt.xlabel("Variable", fontsize=16) | |
plt.ylabel("Gini Importance", fontsize=16) | |
plt.title(title, fontsize=18) | |
plt.ylim([0.0, 1.0]) | |
plt.savefig(flname, DPI=200) | |
if __name__ == "__main__": | |
# burn in | |
for i in xrange(100): | |
random.random() | |
n_snps = len(HETERO_PROB) + N_UNCORRELATED | |
n_features = 2 * n_snps | |
variable_importances = [[] for i in xrange(n_features)] | |
for i in xrange(N_SIMS): | |
print "Round", i | |
X, y = generate_data(N_SAMPLES, HETERO_PROB, N_UNCORRELATED) | |
rf = RandomForestClassifier(n_estimators = N_TREES) | |
rf.fit(X, y) | |
feature_importances = rf.feature_importances_ | |
for i in xrange(len(feature_importances)): | |
variable_importances[i].append(feature_importances[i]) | |
plot_variable_importances("figures/rf_missing_data_none.png", variable_importances, "No Missing Data") | |
variable_importances = [[] for i in xrange(n_features)] | |
for i in xrange(N_SIMS): | |
print "Round", i | |
X, y = generate_data(N_SAMPLES, HETERO_PROB, N_UNCORRELATED) | |
zero_out(X, MISSING_DATA, y, "zero") | |
rf = RandomForestClassifier(n_estimators = N_TREES) | |
rf.fit(X, y) | |
feature_importances = rf.feature_importances_ | |
for i in xrange(len(feature_importances)): | |
variable_importances[i].append(feature_importances[i]) | |
plot_variable_importances("figures/rf_missing_data.png", variable_importances, "Missing Data") | |
variable_importances = [[] for i in xrange(n_features)] | |
for i in xrange(N_SIMS): | |
print "Round", i | |
X, y = generate_data(N_SAMPLES, HETERO_PROB, N_UNCORRELATED) | |
zero_out(X, MISSING_DATA, y, "mode") | |
rf = RandomForestClassifier(n_estimators = N_TREES) | |
rf.fit(X, y) | |
feature_importances = rf.feature_importances_ | |
for i in xrange(len(feature_importances)): | |
variable_importances[i].append(feature_importances[i]) | |
plot_variable_importances("figures/rf_missing_data_imputed_mode.png", variable_importances, "Missing Data Imputed with Mode") | |
variable_importances = [[] for i in xrange(n_features)] | |
for i in xrange(N_SIMS): | |
print "Round", i | |
X, y = generate_data(N_SAMPLES, HETERO_PROB, N_UNCORRELATED) | |
zero_out(X, MISSING_DATA, y, "sample") | |
rf = RandomForestClassifier(n_estimators = N_TREES) | |
rf.fit(X, y) | |
feature_importances = rf.feature_importances_ | |
for i in xrange(len(feature_importances)): | |
variable_importances[i].append(feature_importances[i]) | |
plot_variable_importances("figures/rf_missing_data_imputed_sampling.png", variable_importances, "Missing Data Imputed with Sampling") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment