Skip to content

Instantly share code, notes, and snippets.

@rnowling
Last active January 28, 2018 22:51
Show Gist options
  • Save rnowling/bfd94f606144731233c897d977121146 to your computer and use it in GitHub Desktop.
Save rnowling/bfd94f606144731233c897d977121146 to your computer and use it in GitHub Desktop.
Binomial Test for Identifying Regions of Enriched Differentiation
"""
Copyright 2017 Ronald J. Nowling
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
import numpy as np
from scipy import stats
def stream_snp_positions(flname):
with open(flname) as fl:
for ln in fl:
cols = ln.split()
yield int(cols[1])
def parseargs():
args = argparse.ArgumentParser()
args.add_argument("--snps-fl",
type=str,
required=True,
help="Significant SNPs")
args.add_argument("--window-size",
type=int,
required=True)
args.add_argument("--output-windows",
type=str,
required=True,
help="Output window data")
args.add_argument("--alpha",
type=float,
default=0.01,
help="Significance threshold")
return args.parse_args()
if __name__ == "__main__":
args = parseargs()
sig_positions = []
max_pos = 0
for pos in stream_snp_positions(args.snps_fl):
max_pos = max(pos, max_pos)
sig_positions.append(int(pos))
bins = range(0, max_pos, args.window_size)
if max_pos % args.window_size != 0:
bins.append(max_pos)
hist, _ = np.histogram(sig_positions,
bins=bins)
n_bins = float(len(hist))
n_snps = len(sig_positions)
windows_stats = []
total_prob = 0.0
for i, counts in enumerate(hist):
# assume uniform prob, adjusted by bin size
bin_size = bins[i+1] - bins[i]
expected_prob = float(bin_size) / max_pos
total_prob += expected_prob
pvalue = stats.binom_test(counts, n_snps, expected_prob, alternative="greater")
is_sig = pvalue <= args.alpha
windows_stats.append((bins[i], bins[i+1], counts, is_sig, pvalue))
if args.output_windows:
with open(args.output_windows, "w") as fl:
for start, end, count, is_sig, pvalue in windows_stats:
fl.write("%s\t%s\t%s\t%s\t%s\n" % (start, end, count, is_sig, pvalue))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment