Last active
November 29, 2023 16:52
-
-
Save rnyak/0baa9e80cb419128379f5e91e8a30ed5 to your computer and use it in GitHub Desktop.
XLNet MMs training
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
os.environ["TF_GPU_ALLOCATOR"]="cuda_malloc_async" | |
import glob | |
import numpy as np | |
import pandas as pd | |
import gc | |
import calendar | |
import datetime | |
import cudf | |
import cupy | |
import nvtabular as nvt | |
from merlin.dag import ColumnSelector | |
from merlin.schema import Schema, Tags | |
DATA_FOLDER = os.environ.get("DATA_FOLDER", "/workspace/data") | |
def generate_synthetic_data( | |
start_date: datetime.date, end_date: datetime.date, rows_per_day: int = 10000 | |
) -> pd.DataFrame: | |
assert end_date > start_date, "end_date must be later than start_date" | |
number_of_days = (end_date - start_date).days | |
total_number_of_rows = number_of_days * rows_per_day | |
# Generate a long-tail distribution of item interactions. This simulates that some items are | |
# more popular than others. | |
long_tailed_item_distribution = np.clip( | |
np.random.lognormal(3.0, 10.0, total_number_of_rows).astype(np.int64), 1, 50000 | |
) | |
# generate random item interaction features | |
df = pd.DataFrame( | |
{ | |
"session_id": np.random.randint(10000, 80000, total_number_of_rows), | |
"item_id": long_tailed_item_distribution, | |
}, | |
) | |
# generate category mapping for each item-id | |
df["category"] = pd.cut(df["item_id"], bins=334, labels=np.arange(1, 335)).astype( | |
np.int64 | |
) | |
max_session_length = 60 * 60 # 1 hour | |
def add_timestamp_to_session(session: pd.DataFrame): | |
random_start_date_and_time = calendar.timegm( | |
( | |
start_date | |
# Add day offset from start_date | |
+ datetime.timedelta(days=np.random.randint(0, number_of_days)) | |
# Add time offset within the random day | |
+ datetime.timedelta(seconds=np.random.randint(0, 86_400)) | |
).timetuple() | |
) | |
session["timestamp"] = random_start_date_and_time + np.clip( | |
np.random.lognormal(3.0, 1.0, len(session)).astype(np.int64), | |
0, | |
max_session_length, | |
) | |
return session | |
df = df.groupby("session_id").apply(add_timestamp_to_session).reset_index() | |
return df | |
START_DATE = os.environ.get("START_DATE", "2022/4/1") | |
END_DATE = os.environ.get("END_DATE", "2022/4/5") | |
interactions_df = generate_synthetic_data(datetime.datetime.strptime(START_DATE, '%Y/%m/%d'), | |
datetime.datetime.strptime(END_DATE, '%Y/%m/%d')) | |
interactions_df = cudf.from_pandas(interactions_df) | |
print("Count with in-session repeated interactions: {}".format(len(interactions_df))) | |
# Sorts the dataframe by session and timestamp, to remove consecutive repetitions | |
interactions_df.timestamp = interactions_df.timestamp.astype(int) | |
interactions_df = interactions_df.sort_values(['session_id', 'timestamp']) | |
past_ids = interactions_df['item_id'].shift(1).fillna() | |
session_past_ids = interactions_df['session_id'].shift(1).fillna() | |
# Keeping only no consecutive repeated in session interactions | |
interactions_df = interactions_df[~((interactions_df['session_id'] == session_past_ids) & (interactions_df['item_id'] == past_ids))] | |
print("Count after removed in-session repeated interactions: {}".format(len(interactions_df))) | |
items_first_ts_df = interactions_df.groupby('item_id').agg({'timestamp': 'min'}).reset_index().rename(columns={'timestamp': 'itemid_ts_first'}) | |
interactions_merged_df = interactions_df.merge(items_first_ts_df, on=['item_id'], how='left') | |
# free gpu memory | |
del interactions_df, session_past_ids, items_first_ts_df | |
gc.collect() | |
# create time features | |
session_ts = ColumnSelector(['timestamp']) | |
session_time = ( | |
session_ts >> | |
nvt.ops.LambdaOp(lambda col: cudf.to_datetime(col, unit='s')) >> | |
nvt.ops.Rename(name = 'event_time_dt') | |
) | |
dayofweek = ( | |
session_time >> | |
nvt.ops.LambdaOp(lambda col: col.dt.weekday) >> | |
nvt.ops.Rename(name ='dayofweek') | |
) | |
# Encodes categorical features as contiguous integers | |
cat_feats = ColumnSelector(['category', 'item_id']) + dayofweek >> nvt.ops.Categorify() | |
features = ColumnSelector(['session_id', 'timestamp']) + cat_feats + session_time | |
# Define Groupby Operator | |
groupby_features = features >> nvt.ops.Groupby( | |
groupby_cols=["session_id"], | |
sort_cols=["timestamp"], | |
aggs={ | |
'item_id': ["list", "count"], | |
'category': ["list"], | |
'timestamp': ["first"], | |
'event_time_dt': ["first"], | |
'dayofweek': ["first"], | |
}, | |
name_sep="-") | |
# Truncate sequence features to first interacted 20 items | |
SESSIONS_MAX_LENGTH = 20 | |
item_feat = groupby_features['item_id-list'] >> nvt.ops.TagAsItemID() | |
context_feat = groupby_features['dayofweek-first'] >> nvt.ops.AddMetadata(tags=[Tags.CONTEXT]) | |
groupby_features_list = item_feat + groupby_features['category-list'] >> nvt.ops.AddMetadata(tags=[Tags.SEQUENCE]) | |
groupby_features_truncated = groupby_features_list >> nvt.ops.ListSlice(-SESSIONS_MAX_LENGTH) | |
# Select features for training | |
selected_features = groupby_features['session_id', 'item_id-count'] + groupby_features_truncated + context_feat | |
# Filter out sessions with less than 2 interactions | |
MINIMUM_SESSION_LENGTH = 2 | |
filtered_sessions = selected_features >> nvt.ops.Filter(f=lambda df: df["item_id-count"] >= MINIMUM_SESSION_LENGTH) | |
dataset = nvt.Dataset(interactions_merged_df) | |
workflow = nvt.Workflow(filtered_sessions['session_id', 'item_id-list', 'category-list', 'dayofweek-first']) | |
sessions_gdf = workflow.fit_transform(dataset) | |
sessions_gdf.to_parquet(os.path.join(DATA_FOLDER, "processed_nvt")) | |
workflow.save(os.path.join(DATA_FOLDER, "workflow_etl")) | |
import tensorflow as tf | |
from merlin.schema.tags import Tags | |
from merlin.io.dataset import Dataset | |
import merlin.models.tf as mm | |
train = Dataset(os.path.join(DATA_FOLDER, 'processed_nvt/', 'part_0.parquet')) | |
train.schema= train.schema.select_by_name(['item_id-list', 'category-list', 'dayofweek-first']) | |
seq_schema = train.schema.select_by_tag(Tags.SEQUENCE) | |
context_schema = train.schema.select_by_tag(Tags.CONTEXT) | |
target_schema = train.schema.select_by_tag(Tags.ITEM) | |
target = target_schema.column_names[0] | |
dmodel = int(os.environ.get("dmodel", '32')) | |
input_block = mm.InputBlockV2( | |
train.schema, | |
embeddings=mm.Embeddings( | |
(seq_schema + context_schema).select_by_tag(Tags.CATEGORICAL), | |
sequence_combiner=None, | |
dim=dmodel | |
), | |
post=mm.BroadcastToSequence(context_schema, seq_schema), # we use this if we have context feature (like user features). | |
# If you dont have context feature do NOT use this | |
) | |
xlnet_block = mm.XLNetBlock(d_model=dmodel, n_head=2, n_layer=2) | |
item_id_name = train.schema.select_by_tag(Tags.ITEM).first.properties['domain']['name'] | |
print(item_id_name) | |
# if you want to apply sampled sofmax you should set `sampled_softmax=True`. | |
def get_output_block(schema, input_block=None, weight_tying = True, sampled_softmax=False, logq_correction=True): | |
if weight_tying: | |
candidate_table = input_block["categorical"][item_id_name] | |
to_call = candidate_table | |
else: | |
candidate = schema.select_by_tag(Tags.ITEM_ID) | |
to_call = candidate | |
if sampled_softmax: | |
print("applying sampled softmax") | |
outputs = mm.ContrastiveOutput( | |
to_call=to_call, | |
#logits_temperature=logits_temperature, | |
negative_samplers=mm.PopularityBasedSamplerV2( | |
max_num_samples=1000, # you can change this value | |
max_id=5384, # this value comes from the schema file, check your item-id max value. | |
min_id=2, #this value also depends on your processed item-id data min value. | |
), | |
logq_sampling_correction=logq_correction, | |
) | |
else: | |
print("NO sampled softmax, scoring against all catalog") | |
outputs = mm.CategoricalOutput( | |
to_call=to_call, | |
) | |
return outputs | |
d_model = dmodel | |
weight_tying = True | |
# get output block | |
output_block = get_output_block(train.schema, input_block=input_block) | |
# Define the session encoder | |
if weight_tying: | |
# project tranformer's output to same dimension as target | |
projection = mm.MLPBlock( | |
[128, output_block.to_call.table.dim], | |
no_activation_last_layer=True, | |
) | |
session_encoder = mm.Encoder( | |
input_block, | |
mm.MLPBlock([128, dmodel], no_activation_last_layer=True), | |
xlnet_block, | |
projection, | |
) | |
else: | |
session_encoder = mm.Encoder( | |
input_block, | |
mm.MLPBlock([d_model], no_activation_last_layer=True), | |
xlnet_block, | |
) | |
model_transformer = mm.RetrievalModelV2(query=session_encoder, output=output_block) | |
EPOCHS = int(os.environ.get("EPOCHS", '1')) | |
BATCH_SIZE = 1024 | |
LEARNING_RATE = 0.005 | |
optimizer = tf.keras.optimizers.Adam( | |
learning_rate=LEARNING_RATE, | |
) | |
# get loss | |
loss = tf.keras.losses.CategoricalCrossentropy( | |
from_logits=True | |
) | |
model_transformer.compile( | |
run_eagerly=False, | |
optimizer=optimizer, | |
loss=loss, | |
metrics=mm.TopKMetricsAggregator.default_metrics(top_ks=[10]) | |
) | |
model_transformer.fit( | |
train, | |
batch_size=BATCH_SIZE, | |
epochs=EPOCHS, | |
pre=mm.SequenceMaskRandom(schema=seq_schema, target=target, masking_prob=0.3, transformer=xlnet_block), | |
#drop_last =True | |
) | |
model_transformer.save('./saved_model') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment