Last active
April 3, 2020 17:50
-
-
Save rnyak/7e021bafae1bb16420e27679c95d90cd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import math | |
import cudf | |
import dask, dask_cudf | |
import xgboost as xgb | |
from dask.distributed import Client, wait | |
from dask_cuda import LocalCUDACluster | |
# connect to the Dask cluster created at Dataproc startup time | |
cluster = LocalCUDACluster() | |
client = Client(cluster) | |
# forces workers to restart. useful to ensure GPU memory is clear | |
client.restart() | |
client | |
cdf = cudf.DataFrame({'passengers': [2, 1, 1, 1, 1, 3, 2], | |
'trip_distance': [1.59, 3.30, 1.80, 0.50, 3.00, 6.00, 12.00], | |
'fare_amount': [12.0, 14.5, 9.5, 3.5, 15.0, 17.00, 18.50]}) | |
ddf= dask_cudf.from_cudf(cdf, npartitions=1) | |
X_train = ddf.query('trip_distance <6').persist() | |
# create a Y_train ddf with just the target variable | |
Y_train = X_train[['fare_amount']].persist() | |
# drop the target variable from the training ddf | |
X_train = X_train[X_train.columns.difference(['fare_amount'])] | |
# this wont return until all data is in GPU memory | |
done = wait([X_train, Y_train]) | |
X_test = ddf.query('trip_distance >= 6').persist() | |
#X_test = drop_empty_partitions(X_test) | |
# Create Y_test with just the fare amount | |
Y_test = X_test[['fare_amount']].persist() | |
# Drop the fare amount from X_test | |
X_test = X_test[X_test.columns.difference(['fare_amount'])] | |
# this wont return until all data is in GPU memory | |
done = wait([X_test, Y_test]) | |
dtrain = xgb.dask.DaskDMatrix(client, X_train, Y_train) | |
#train model | |
trained_model = xgb.dask.train(client, | |
{ | |
'learning_rate': 0.3, | |
'max_depth': 8, | |
'objective': 'reg:squarederror', | |
'subsample': 0.6, | |
'gamma': 1, | |
'silent': True, | |
'verbose_eval': True, | |
'tree_method':'gpu_hist', | |
'n_gpus': 1 | |
}, | |
dtrain, | |
num_boost_round=100, evals=[(dtrain, 'train')]) | |
# generate predictions on the test set | |
'''feed X_test as a dataframe''' | |
prediction = xgb.dask.predict(client, trained_model['booster'], X_test).persist() | |
wait(prediction) | |
type(prediction) | |
dask.dataframe.core.Series | |
#convert prediction to dask_cudf.core.Series | |
pred = dask_cudf.from_dask_dataframe(prediction) | |
true = Y_test['fare_amount'] | |
#want to calculate RMSE, but getting inaccurate results: | |
RMSE formula: | |
SE = ((pred-true) **2).compute() | |
math.sqrt(SE.mean()) | |
#this gives wrong results | |
((pred -true)**2).compute() | |
0 null | |
1 null | |
5 null | |
6 null | |
dtype: float64 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment