Last active
November 8, 2022 16:02
-
-
Save rnyak/f494d86cb22b7cf4e3be3837301bd859 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from merlin.datasets.synthetic import generate_data | |
train, valid = generate_data("dressipi2022-preprocessed", num_rows=10000, set_sizes=(0.8, 0.2)) | |
item_features_names = ['f_' + str(col) for col in [47, 68]] | |
cat_features = [['item_id', 'purchase_id']] + item_features_names >> nvt.ops.Categorify() | |
features = ['session_id', 'timestamp', 'date'] + cat_features | |
to_aggregate = {} | |
to_aggregate['date'] = ["first"] | |
to_aggregate['item_id'] = ["last", "list"] | |
to_aggregate['purchase_id'] = ["first"] | |
for name in item_features_names: | |
to_aggregate[name] = ['list'] | |
groupby_features = features >> nvt.ops.Groupby( | |
groupby_cols=["session_id"], | |
sort_cols=["date"], | |
aggs= to_aggregate, | |
name_sep="_") | |
item_last = ( | |
groupby_features['item_id_last'] >> | |
AddMetadata(tags=[Tags.ITEM, Tags.ITEM_ID]) | |
) | |
item_list = ( | |
groupby_features['item_id_list'] >> | |
AddMetadata( | |
tags=[Tags.ITEM, Tags.ITEM_ID, Tags.LIST, Tags.SEQUENCE] | |
) | |
) | |
feature_list = ( | |
groupby_features[[name+'_list' for name in item_features_names]] >> | |
AddMetadata( | |
tags=[Tags.SEQUENCE, Tags.ITEM, Tags.LIST] | |
) | |
) | |
other_features = groupby_features['session_id', 'date_first'] | |
groupby_features = item_last + item_list + feature_list + other_features + groupby_features['purchase_id_first'] | |
list_features = [name+'_list' for name in item_features_names] + ['item_id_list'] | |
nonlist_features = ['session_id', 'date_first', 'item_id_last', 'purchase_id_first'] | |
SESSIONS_MAX_LENGTH = 3 | |
truncated_features = groupby_features[list_features] >> nvt.ops.ListSlice(-SESSIONS_MAX_LENGTH) >> nvt.ops.Rename(postfix = '_seq') | |
final_features = groupby_features[nonlist_features] + truncated_features | |
workflow = nvt.Workflow(final_features) | |
# fit data | |
train = workflow.fit_transform(train) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment