-
-
Save roachsinai/6d3277c252e89ac3863a52691746cc95 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "YOLONET" | |
layer { | |
name: "data" | |
type: "Input" | |
top: "data" | |
input_param { shape: { dim: 1 dim: 3 dim: 416 dim: 416 } } | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
convolution_param { | |
num_output: 32 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn1" | |
type: "BatchNorm" | |
bottom: "conv1" | |
top: "bn1" | |
} | |
layer { | |
name: "scale1" | |
type: "Scale" | |
bottom: "bn1" | |
top: "scale1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "scale1" | |
top: "scale1" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "scale1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn2" | |
type: "BatchNorm" | |
bottom: "conv2" | |
top: "bn2" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale2" | |
type: "Scale" | |
bottom: "bn2" | |
top: "scale2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "scale2" | |
top: "scale2" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "scale2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn3" | |
type: "BatchNorm" | |
bottom: "conv3" | |
top: "bn3" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale3" | |
type: "Scale" | |
bottom: "bn3" | |
top: "scale3" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "scale3" | |
top: "scale3" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv4" | |
type: "Convolution" | |
bottom: "scale3" | |
top: "conv4" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
pad: 0 #?? | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn4" | |
type: "BatchNorm" | |
bottom: "conv4" | |
top: "bn4" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale4" | |
type: "Scale" | |
bottom: "bn4" | |
top: "scale4" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu4" | |
type: "ReLU" | |
bottom: "scale4" | |
top: "scale4" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv5" | |
type: "Convolution" | |
bottom: "scale4" | |
top: "conv5" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn5" | |
type: "BatchNorm" | |
bottom: "conv5" | |
top: "bn5" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale5" | |
type: "Scale" | |
bottom: "bn5" | |
top: "scale5" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu5" | |
type: "ReLU" | |
bottom: "scale5" | |
top: "scale5" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "scale5" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv6" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "conv6" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn6" | |
type: "BatchNorm" | |
bottom: "conv6" | |
top: "bn6" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale6" | |
type: "Scale" | |
bottom: "bn6" | |
top: "scale6" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu6" | |
type: "ReLU" | |
bottom: "scale6" | |
top: "scale6" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv7" | |
type: "Convolution" | |
bottom: "scale6" | |
top: "conv7" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn7" | |
type: "BatchNorm" | |
bottom: "conv7" | |
top: "bn7" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale7" | |
type: "Scale" | |
bottom: "bn7" | |
top: "scale7" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu7" | |
type: "ReLU" | |
bottom: "scale7" | |
top: "scale7" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv8" | |
type: "Convolution" | |
bottom: "scale7" | |
top: "conv8" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn8" | |
type: "BatchNorm" | |
bottom: "conv8" | |
top: "bn8" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale8" | |
type: "Scale" | |
bottom: "bn8" | |
top: "scale8" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu8" | |
type: "ReLU" | |
bottom: "scale8" | |
top: "scale8" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool8" | |
type: "Pooling" | |
bottom: "scale8" | |
top: "pool8" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv9" | |
type: "Convolution" | |
bottom: "pool8" | |
top: "conv9" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn9" | |
type: "BatchNorm" | |
bottom: "conv9" | |
top: "bn9" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale9" | |
type: "Scale" | |
bottom: "bn9" | |
top: "scale9" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu9" | |
type: "ReLU" | |
bottom: "scale9" | |
top: "scale9" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv10" | |
type: "Convolution" | |
bottom: "scale9" | |
top: "conv10" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn10" | |
type: "BatchNorm" | |
bottom: "conv10" | |
top: "bn10" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale10" | |
type: "Scale" | |
bottom: "bn10" | |
top: "scale10" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu10" | |
type: "ReLU" | |
bottom: "scale10" | |
top: "scale10" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv11" | |
type: "Convolution" | |
bottom: "scale10" | |
top: "conv11" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn11" | |
type: "BatchNorm" | |
bottom: "conv11" | |
top: "bn11" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale11" | |
type: "Scale" | |
bottom: "bn11" | |
top: "scale11" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu11" | |
type: "ReLU" | |
bottom: "scale11" | |
top: "scale11" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv12" | |
type: "Convolution" | |
bottom: "scale11" | |
top: "conv12" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn12" | |
type: "BatchNorm" | |
bottom: "conv12" | |
top: "bn12" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale12" | |
type: "Scale" | |
bottom: "bn12" | |
top: "scale12" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu12" | |
type: "ReLU" | |
bottom: "scale12" | |
top: "scale12" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv13" | |
type: "Convolution" | |
bottom: "scale12" | |
top: "conv13" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn13" | |
type: "BatchNorm" | |
bottom: "conv13" | |
top: "bn13" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale13" | |
type: "Scale" | |
bottom: "bn13" | |
top: "scale13" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu13" | |
type: "ReLU" | |
bottom: "scale13" | |
top: "scale13" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "pool13" | |
type: "Pooling" | |
bottom: "scale13" | |
top: "pool13" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer{ | |
name: "conv14" | |
type: "Convolution" | |
bottom: "pool13" | |
top: "conv14" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn14" | |
type: "BatchNorm" | |
bottom: "conv14" | |
top: "bn14" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale14" | |
type: "Scale" | |
bottom: "bn14" | |
top: "scale14" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu14" | |
type: "ReLU" | |
bottom: "scale14" | |
top: "scale14" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv15" | |
type: "Convolution" | |
bottom: "scale14" | |
top: "conv15" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn15" | |
type: "BatchNorm" | |
bottom: "conv15" | |
top: "bn15" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale15" | |
type: "Scale" | |
bottom: "bn15" | |
top: "scale15" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu15" | |
type: "ReLU" | |
bottom: "scale15" | |
top: "scale15" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv16" | |
type: "Convolution" | |
bottom: "scale15" | |
top: "conv16" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn16" | |
type: "BatchNorm" | |
bottom: "conv16" | |
top: "bn16" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale16" | |
type: "Scale" | |
bottom: "bn16" | |
top: "scale16" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu16" | |
type: "ReLU" | |
bottom: "scale16" | |
top: "scale16" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv17" | |
type: "Convolution" | |
bottom: "scale16" | |
top: "conv17" | |
convolution_param { | |
num_output: 512 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn17" | |
type: "BatchNorm" | |
bottom: "conv17" | |
top: "bn17" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale17" | |
type: "Scale" | |
bottom: "bn17" | |
top: "scale17" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu17" | |
type: "ReLU" | |
bottom: "scale17" | |
top: "scale17" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv18" | |
type: "Convolution" | |
bottom: "scale17" | |
top: "conv18" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn18" | |
type: "BatchNorm" | |
bottom: "conv18" | |
top: "bn18" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale18" | |
type: "Scale" | |
bottom: "bn18" | |
top: "scale18" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu18" | |
type: "ReLU" | |
bottom: "scale18" | |
top: "scale18" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv19" | |
type: "Convolution" | |
bottom: "scale18" | |
top: "conv19" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn19" | |
type: "BatchNorm" | |
bottom: "conv19" | |
top: "bn19" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale19" | |
type: "Scale" | |
bottom: "bn19" | |
top: "scale19" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu19" | |
type: "ReLU" | |
bottom: "scale19" | |
top: "scale19" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer{ | |
name: "conv20" | |
type: "Convolution" | |
bottom: "scale19" | |
top: "conv20" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn20" | |
type: "BatchNorm" | |
bottom: "conv20" | |
top: "bn20" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale20" | |
type: "Scale" | |
bottom: "bn20" | |
top: "scale20" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu20" | |
type: "ReLU" | |
bottom: "scale20" | |
top: "scale20" | |
relu_param { | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "concat1" | |
type: "Concat" | |
bottom: "scale13" | |
top: "concat1" | |
} | |
layer { | |
name: "reorg1" | |
type: "Reorg" | |
bottom: "concat1" | |
top: "reorg1" | |
reorg_param { | |
stride: 2 | |
} | |
} | |
layer { | |
name: "concat2" | |
type: "Concat" | |
bottom: "reorg1" | |
bottom: "scale20" | |
top: "concat2" | |
} | |
layer{ | |
name: "conv21" | |
type: "Convolution" | |
bottom: "concat2" | |
top: "conv21" | |
convolution_param { | |
num_output: 1024 | |
kernel_size: 3 | |
pad: 1 | |
stride: 1 | |
bias_term: false | |
} | |
} | |
layer { | |
name: "bn21" | |
type: "BatchNorm" | |
bottom: "conv21" | |
top: "bn21" | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
} | |
} | |
layer { | |
name: "scale21" | |
type: "Scale" | |
bottom: "bn21" | |
top: "scale21" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "relu21" | |
type: "ReLU" | |
bottom: "scale21" | |
top: "scale21" | |
relu_param{ | |
negative_slope: 0.1 | |
} | |
} | |
layer { | |
name: "conv22" | |
type: "Convolution" | |
bottom: "scale21" | |
top: "conv22" | |
convolution_param { | |
num_output: 425 | |
kernel_size: 1 | |
pad: 0 | |
stride: 1 | |
} | |
} | |
layer { | |
name: "region1" | |
type: "Region" | |
bottom: "conv22" | |
top: "region1" | |
region_param { | |
classes: 80 | |
coords: 4 | |
boxes_of_each_grid: 5 | |
softmax: true | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment